![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumfsupp | Structured version Visualization version GIF version |
Description: A group sum of a family can be restricted to the support of that family without changing its value, provided that that support is finite. This corresponds to the definition of an (infinite) product in [Lang] p. 5, last two formulas. (Contributed by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
gsumfsupp.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumfsupp.z | ⊢ 0 = (0g‘𝐺) |
gsumfsupp.s | ⊢ 𝐼 = (𝐹 supp 0 ) |
gsumfsupp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumfsupp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumfsupp.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumfsupp.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumfsupp | ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐼)) = (𝐺 Σg 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumfsupp.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumfsupp.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumfsupp.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumfsupp.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumfsupp.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
6 | gsumfsupp.s | . . . 4 ⊢ 𝐼 = (𝐹 supp 0 ) | |
7 | 6 | eqimss2i 4038 | . . 3 ⊢ (𝐹 supp 0 ) ⊆ 𝐼 |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝐼) |
9 | gsumfsupp.w | . 2 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
10 | 1, 2, 3, 4, 5, 8, 9 | gsumres 19833 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐼)) = (𝐺 Σg 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 class class class wbr 5141 ↾ cres 5671 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 supp csupp 8146 finSupp cfsupp 9363 Basecbs 17153 0gc0g 17394 Σg cgsu 17395 CMndccmn 19700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-0g 17396 df-gsum 17397 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-cntz 19233 df-cmn 19702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |