MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeo Structured version   Visualization version   GIF version

Theorem icchmeo 24786
Description: The natural bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.) Avoid ax-mulf 11185. (Revised by GG, 16-Mar-2025.)
Hypotheses
Ref Expression
icchmeo.j 𝐽 = (TopOpen‘ℂfld)
icchmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
icchmeo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icchmeo
Dummy variables 𝑦 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icchmeo.f . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 iitopon 24720 . . . . . 6 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → II ∈ (TopOn‘(0[,]1)))
4 icchmeo.j . . . . . . . . . . 11 𝐽 = (TopOpen‘ℂfld)
54dfii3 24724 . . . . . . . . . 10 II = (𝐽t (0[,]1))
65eqcomi 2733 . . . . . . . . 9 (𝐽t (0[,]1)) = II
76oveq2i 7412 . . . . . . . 8 (II Cn (𝐽t (0[,]1))) = (II Cn II)
84cnfldtop 24621 . . . . . . . . 9 𝐽 ∈ Top
9 cnrest2r 23112 . . . . . . . . 9 (𝐽 ∈ Top → (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽))
108, 9ax-mp 5 . . . . . . . 8 (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽)
117, 10eqsstrri 4009 . . . . . . 7 (II Cn II) ⊆ (II Cn 𝐽)
123cnmptid 23486 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
1311, 12sselid 3972 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn 𝐽))
144cnfldtopon 24620 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1514a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐽 ∈ (TopOn‘ℂ))
16 simp2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
1716recnd 11238 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
183, 15, 17cnmptc 23487 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐵) ∈ (II Cn 𝐽))
194mpomulcn 24706 . . . . . . 7 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2019a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
21 oveq12 7410 . . . . . 6 ((𝑢 = 𝑥𝑣 = 𝐵) → (𝑢 · 𝑣) = (𝑥 · 𝐵))
223, 13, 18, 15, 15, 20, 21cnmpt12 23492 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (𝑥 · 𝐵)) ∈ (II Cn 𝐽))
23 1cnd 11205 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
243, 15, 23cnmptc 23487 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 1) ∈ (II Cn 𝐽))
254subcn 24703 . . . . . . . 8 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2625a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
273, 24, 13, 26cnmpt12f 23491 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn 𝐽))
28 simp1 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2928recnd 11238 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
303, 15, 29cnmptc 23487 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ (II Cn 𝐽))
31 oveq12 7410 . . . . . 6 ((𝑢 = (1 − 𝑥) ∧ 𝑣 = 𝐴) → (𝑢 · 𝑣) = ((1 − 𝑥) · 𝐴))
323, 27, 30, 15, 15, 20, 31cnmpt12 23492 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥) · 𝐴)) ∈ (II Cn 𝐽))
334addcn 24702 . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3433a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
353, 22, 32, 34cnmpt12f 23491 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ∈ (II Cn 𝐽))
361, 35eqeltrid 2829 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn 𝐽))
371iccf1o 13469 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
3837simpld 494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵))
39 f1of 6823 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → 𝐹:(0[,]1)⟶(𝐴[,]𝐵))
40 frn 6714 . . . . 5 (𝐹:(0[,]1)⟶(𝐴[,]𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
4138, 39, 403syl 18 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
42 iccssre 13402 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
43423adant3 1129 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
44 ax-resscn 11162 . . . . 5 ℝ ⊆ ℂ
4543, 44sstrdi 3986 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℂ)
46 cnrest2 23111 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4714, 41, 45, 46mp3an2i 1462 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4836, 47mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))))
4937simprd 495 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))))
50 resttopon 22986 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
5114, 45, 50sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
52 cnrest2r 23112 . . . . . . . . 9 (𝐽 ∈ Top → ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
538, 52ax-mp 5 . . . . . . . 8 ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽)
5451cnmptid 23486 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))))
5553, 54sselid 3972 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5651, 15, 29cnmptc 23487 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5751, 55, 56, 26cnmpt12f 23491 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦𝐴)) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
58 difrp 13008 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
5958biimp3a 1465 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
60 rpcnne0 12988 . . . . . . 7 ((𝐵𝐴) ∈ ℝ+ → ((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0))
614divccn 24712 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
6259, 60, 613syl 18 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
63 oveq1 7408 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥 / (𝐵𝐴)) = ((𝑦𝐴) / (𝐵𝐴)))
6451, 57, 15, 62, 63cnmpt11 23488 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
6549, 64eqeltrd 2825 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
66 dfdm4 5885 . . . . . . 7 dom 𝐹 = ran 𝐹
6766eqimss2i 4035 . . . . . 6 ran 𝐹 ⊆ dom 𝐹
68 f1odm 6827 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → dom 𝐹 = (0[,]1))
6938, 68syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → dom 𝐹 = (0[,]1))
7067, 69sseqtrid 4026 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (0[,]1))
71 unitsscn 13473 . . . . . 6 (0[,]1) ⊆ ℂ
7271a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℂ)
73 cnrest2 23111 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7414, 70, 72, 73mp3an2i 1462 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7565, 74mpbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1))))
765oveq2i 7412 . . 3 ((𝐽t (𝐴[,]𝐵)) Cn II) = ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))
7775, 76eleqtrrdi 2836 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II))
78 ishmeo 23584 . 2 (𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))) ↔ (𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II)))
7948, 77, 78sylanbrc 582 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wss 3940   class class class wbr 5138  cmpt 5221  ccnv 5665  dom cdm 5666  ran crn 5667  wf 6529  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  cmpo 7403  cc 11103  cr 11104  0cc0 11105  1c1 11106   + caddc 11108   · cmul 11110   < clt 11244  cmin 11440   / cdiv 11867  +crp 12970  [,]cicc 13323  t crest 17364  TopOpenctopn 17365  fldccnfld 21227  Topctop 22716  TopOnctopon 22733   Cn ccn 23049   ×t ctx 23385  Homeochmeo 23578  IIcii 24716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-struct 17078  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-starv 17210  df-sca 17211  df-vsca 17212  df-ip 17213  df-tset 17214  df-ple 17215  df-ds 17217  df-unif 17218  df-hom 17219  df-cco 17220  df-rest 17366  df-topn 17367  df-0g 17385  df-gsum 17386  df-topgen 17387  df-pt 17388  df-prds 17391  df-xrs 17446  df-qtop 17451  df-imas 17452  df-xps 17454  df-mre 17528  df-mrc 17529  df-acs 17531  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-submnd 18703  df-mulg 18985  df-cntz 19222  df-cmn 19691  df-psmet 21219  df-xmet 21220  df-met 21221  df-bl 21222  df-mopn 21223  df-cnfld 21228  df-top 22717  df-topon 22734  df-topsp 22756  df-bases 22770  df-cn 23052  df-cnp 23053  df-tx 23387  df-hmeo 23580  df-xms 24147  df-ms 24148  df-tms 24149  df-ii 24718
This theorem is referenced by:  xrhmph  24793
  Copyright terms: Public domain W3C validator