MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeo Structured version   Visualization version   GIF version

Theorem icchmeo 24304
Description: The natural bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
icchmeo.j 𝐽 = (TopOpen‘ℂfld)
icchmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
icchmeo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icchmeo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icchmeo.f . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 iitopon 24242 . . . . . 6 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → II ∈ (TopOn‘(0[,]1)))
4 icchmeo.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
54dfii3 24246 . . . . . . . . 9 II = (𝐽t (0[,]1))
65oveq2i 7368 . . . . . . . 8 (II Cn II) = (II Cn (𝐽t (0[,]1)))
74cnfldtop 24147 . . . . . . . . 9 𝐽 ∈ Top
8 cnrest2r 22638 . . . . . . . . 9 (𝐽 ∈ Top → (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽))
97, 8ax-mp 5 . . . . . . . 8 (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽)
106, 9eqsstri 3978 . . . . . . 7 (II Cn II) ⊆ (II Cn 𝐽)
113cnmptid 23012 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
1210, 11sselid 3942 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn 𝐽))
134cnfldtopon 24146 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐽 ∈ (TopOn‘ℂ))
15 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
1615recnd 11183 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
173, 14, 16cnmptc 23013 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐵) ∈ (II Cn 𝐽))
184mulcn 24230 . . . . . . 7 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1918a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
203, 12, 17, 19cnmpt12f 23017 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (𝑥 · 𝐵)) ∈ (II Cn 𝐽))
21 1cnd 11150 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
223, 14, 21cnmptc 23013 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 1) ∈ (II Cn 𝐽))
234subcn 24229 . . . . . . . 8 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
253, 22, 12, 24cnmpt12f 23017 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn 𝐽))
26 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2726recnd 11183 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
283, 14, 27cnmptc 23013 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ (II Cn 𝐽))
293, 25, 28, 19cnmpt12f 23017 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥) · 𝐴)) ∈ (II Cn 𝐽))
304addcn 24228 . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3130a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
323, 20, 29, 31cnmpt12f 23017 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ∈ (II Cn 𝐽))
331, 32eqeltrid 2842 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn 𝐽))
341iccf1o 13413 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
3534simpld 495 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵))
36 f1of 6784 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → 𝐹:(0[,]1)⟶(𝐴[,]𝐵))
37 frn 6675 . . . . 5 (𝐹:(0[,]1)⟶(𝐴[,]𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
3835, 36, 373syl 18 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
39 iccssre 13346 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ax-resscn 11108 . . . . 5 ℝ ⊆ ℂ
4240, 41sstrdi 3956 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℂ)
43 cnrest2 22637 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4413, 38, 42, 43mp3an2i 1466 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4533, 44mpbid 231 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))))
4634simprd 496 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))))
47 resttopon 22512 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
4813, 42, 47sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
49 cnrest2r 22638 . . . . . . . . 9 (𝐽 ∈ Top → ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
507, 49ax-mp 5 . . . . . . . 8 ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽)
5148cnmptid 23012 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))))
5250, 51sselid 3942 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5348, 14, 27cnmptc 23013 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5448, 52, 53, 24cnmpt12f 23017 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦𝐴)) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
55 difrp 12953 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
5655biimp3a 1469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
5756rpcnd 12959 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
5856rpne0d 12962 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≠ 0)
594divccn 24236 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
6057, 58, 59syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
61 oveq1 7364 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥 / (𝐵𝐴)) = ((𝑦𝐴) / (𝐵𝐴)))
6248, 54, 14, 60, 61cnmpt11 23014 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
6346, 62eqeltrd 2838 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
64 dfdm4 5851 . . . . . . 7 dom 𝐹 = ran 𝐹
6564eqimss2i 4003 . . . . . 6 ran 𝐹 ⊆ dom 𝐹
66 f1odm 6788 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → dom 𝐹 = (0[,]1))
6735, 66syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → dom 𝐹 = (0[,]1))
6865, 67sseqtrid 3996 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (0[,]1))
69 unitssre 13416 . . . . . . 7 (0[,]1) ⊆ ℝ
7069a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℝ)
7170, 41sstrdi 3956 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℂ)
72 cnrest2 22637 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7313, 68, 71, 72mp3an2i 1466 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7463, 73mpbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1))))
755oveq2i 7368 . . 3 ((𝐽t (𝐴[,]𝐵)) Cn II) = ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))
7674, 75eleqtrrdi 2849 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II))
77 ishmeo 23110 . 2 (𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))) ↔ (𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II)))
7845, 76, 77sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wss 3910   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  ran crn 5634  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cmin 11385   / cdiv 11812  +crp 12915  [,]cicc 13267  t crest 17302  TopOpenctopn 17303  fldccnfld 20796  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911  Homeochmeo 23104  IIcii 24238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-ii 24240
This theorem is referenced by:  xrhmph  24310
  Copyright terms: Public domain W3C validator