MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeo Structured version   Visualization version   GIF version

Theorem icchmeo 23539
Description: The natural bijection from [0, 1] to an arbitrary nontrivial closed interval [𝐴, 𝐵] is a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015.)
Hypotheses
Ref Expression
icchmeo.j 𝐽 = (TopOpen‘ℂfld)
icchmeo.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
icchmeo ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icchmeo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icchmeo.f . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 iitopon 23481 . . . . . 6 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → II ∈ (TopOn‘(0[,]1)))
4 icchmeo.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
54dfii3 23485 . . . . . . . . 9 II = (𝐽t (0[,]1))
65oveq2i 7161 . . . . . . . 8 (II Cn II) = (II Cn (𝐽t (0[,]1)))
74cnfldtop 23386 . . . . . . . . 9 𝐽 ∈ Top
8 cnrest2r 21889 . . . . . . . . 9 (𝐽 ∈ Top → (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽))
97, 8ax-mp 5 . . . . . . . 8 (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽)
106, 9eqsstri 4000 . . . . . . 7 (II Cn II) ⊆ (II Cn 𝐽)
113cnmptid 22263 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
1210, 11sseldi 3964 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn 𝐽))
134cnfldtopon 23385 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐽 ∈ (TopOn‘ℂ))
15 simp2 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
1615recnd 10663 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
173, 14, 16cnmptc 22264 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐵) ∈ (II Cn 𝐽))
184mulcn 23469 . . . . . . 7 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1918a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
203, 12, 17, 19cnmpt12f 22268 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (𝑥 · 𝐵)) ∈ (II Cn 𝐽))
21 1cnd 10630 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
223, 14, 21cnmptc 22264 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 1) ∈ (II Cn 𝐽))
234subcn 23468 . . . . . . . 8 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
253, 22, 12, 24cnmpt12f 22268 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn 𝐽))
26 simp1 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2726recnd 10663 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
283, 14, 27cnmptc 22264 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ (II Cn 𝐽))
293, 25, 28, 19cnmpt12f 22268 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥) · 𝐴)) ∈ (II Cn 𝐽))
304addcn 23467 . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3130a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
323, 20, 29, 31cnmpt12f 22268 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ∈ (II Cn 𝐽))
331, 32eqeltrid 2917 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn 𝐽))
341iccf1o 12876 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
3534simpld 497 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵))
36 f1of 6609 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → 𝐹:(0[,]1)⟶(𝐴[,]𝐵))
37 frn 6514 . . . . 5 (𝐹:(0[,]1)⟶(𝐴[,]𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
3835, 36, 373syl 18 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
39 iccssre 12812 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1128 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ax-resscn 10588 . . . . 5 ℝ ⊆ ℂ
4240, 41sstrdi 3978 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℂ)
43 cnrest2 21888 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4413, 38, 42, 43mp3an2i 1462 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4533, 44mpbid 234 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))))
4634simprd 498 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))))
47 resttopon 21763 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
4813, 42, 47sylancr 589 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
49 cnrest2r 21889 . . . . . . . . 9 (𝐽 ∈ Top → ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
507, 49ax-mp 5 . . . . . . . 8 ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽)
5148cnmptid 22263 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))))
5250, 51sseldi 3964 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5348, 14, 27cnmptc 22264 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5448, 52, 53, 24cnmpt12f 22268 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦𝐴)) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
55 difrp 12421 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
5655biimp3a 1465 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
5756rpcnd 12427 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
5856rpne0d 12430 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≠ 0)
594divccn 23475 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
6057, 58, 59syl2anc 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
61 oveq1 7157 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥 / (𝐵𝐴)) = ((𝑦𝐴) / (𝐵𝐴)))
6248, 54, 14, 60, 61cnmpt11 22265 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
6346, 62eqeltrd 2913 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
64 dfdm4 5758 . . . . . . 7 dom 𝐹 = ran 𝐹
6564eqimss2i 4025 . . . . . 6 ran 𝐹 ⊆ dom 𝐹
66 f1odm 6613 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → dom 𝐹 = (0[,]1))
6735, 66syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → dom 𝐹 = (0[,]1))
6865, 67sseqtrid 4018 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (0[,]1))
69 unitssre 12879 . . . . . . 7 (0[,]1) ⊆ ℝ
7069a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℝ)
7170, 41sstrdi 3978 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℂ)
72 cnrest2 21888 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7313, 68, 71, 72mp3an2i 1462 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7463, 73mpbid 234 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1))))
755oveq2i 7161 . . 3 ((𝐽t (𝐴[,]𝐵)) Cn II) = ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))
7674, 75eleqtrrdi 2924 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II))
77 ishmeo 22361 . 2 (𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))) ↔ (𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II)))
7845, 76, 77sylanbrc 585 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wss 3935   class class class wbr 5058  cmpt 5138  ccnv 5548  dom cdm 5549  ran crn 5550  wf 6345  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cmin 10864   / cdiv 11291  +crp 12383  [,]cicc 12735  t crest 16688  TopOpenctopn 16689  fldccnfld 20539  Topctop 21495  TopOnctopon 21512   Cn ccn 21826   ×t ctx 22162  Homeochmeo 22355  IIcii 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-ii 23479
This theorem is referenced by:  xrhmph  23545
  Copyright terms: Public domain W3C validator