MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeoOLD Structured version   Visualization version   GIF version

Theorem icchmeoOLD 24815
Description: Obsolete version of icchmeo 24814 as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
icchmeoOLD.j 𝐽 = (TopOpen‘ℂfld)
icchmeoOLD.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
icchmeoOLD ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icchmeoOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icchmeoOLD.f . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 iitopon 24748 . . . . . 6 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → II ∈ (TopOn‘(0[,]1)))
4 icchmeoOLD.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
54dfii3 24752 . . . . . . . . 9 II = (𝐽t (0[,]1))
65oveq2i 7380 . . . . . . . 8 (II Cn II) = (II Cn (𝐽t (0[,]1)))
74cnfldtop 24647 . . . . . . . . 9 𝐽 ∈ Top
8 cnrest2r 23150 . . . . . . . . 9 (𝐽 ∈ Top → (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽))
97, 8ax-mp 5 . . . . . . . 8 (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽)
106, 9eqsstri 3990 . . . . . . 7 (II Cn II) ⊆ (II Cn 𝐽)
113cnmptid 23524 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
1210, 11sselid 3941 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn 𝐽))
134cnfldtopon 24646 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐽 ∈ (TopOn‘ℂ))
15 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
1615recnd 11178 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
173, 14, 16cnmptc 23525 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐵) ∈ (II Cn 𝐽))
184mulcn 24732 . . . . . . 7 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1918a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
203, 12, 17, 19cnmpt12f 23529 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (𝑥 · 𝐵)) ∈ (II Cn 𝐽))
21 1cnd 11145 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
223, 14, 21cnmptc 23525 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 1) ∈ (II Cn 𝐽))
234subcn 24731 . . . . . . . 8 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
253, 22, 12, 24cnmpt12f 23529 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn 𝐽))
26 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2726recnd 11178 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
283, 14, 27cnmptc 23525 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ (II Cn 𝐽))
293, 25, 28, 19cnmpt12f 23529 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥) · 𝐴)) ∈ (II Cn 𝐽))
304addcn 24730 . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3130a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
323, 20, 29, 31cnmpt12f 23529 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ∈ (II Cn 𝐽))
331, 32eqeltrid 2832 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn 𝐽))
341iccf1o 13433 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
3534simpld 494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵))
36 f1of 6782 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → 𝐹:(0[,]1)⟶(𝐴[,]𝐵))
37 frn 6677 . . . . 5 (𝐹:(0[,]1)⟶(𝐴[,]𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
3835, 36, 373syl 18 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
39 iccssre 13366 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ax-resscn 11101 . . . . 5 ℝ ⊆ ℂ
4240, 41sstrdi 3956 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℂ)
43 cnrest2 23149 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4413, 38, 42, 43mp3an2i 1468 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4533, 44mpbid 232 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))))
4634simprd 495 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))))
47 resttopon 23024 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
4813, 42, 47sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
49 cnrest2r 23150 . . . . . . . . 9 (𝐽 ∈ Top → ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
507, 49ax-mp 5 . . . . . . . 8 ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽)
5148cnmptid 23524 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))))
5250, 51sselid 3941 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5348, 14, 27cnmptc 23525 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5448, 52, 53, 24cnmpt12f 23529 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦𝐴)) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
55 difrp 12967 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
5655biimp3a 1471 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
5756rpcnd 12973 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
5856rpne0d 12976 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≠ 0)
594divccn 24740 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
6057, 58, 59syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
61 oveq1 7376 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥 / (𝐵𝐴)) = ((𝑦𝐴) / (𝐵𝐴)))
6248, 54, 14, 60, 61cnmpt11 23526 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
6346, 62eqeltrd 2828 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
64 dfdm4 5849 . . . . . . 7 dom 𝐹 = ran 𝐹
6564eqimss2i 4005 . . . . . 6 ran 𝐹 ⊆ dom 𝐹
66 f1odm 6786 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → dom 𝐹 = (0[,]1))
6735, 66syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → dom 𝐹 = (0[,]1))
6865, 67sseqtrid 3986 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (0[,]1))
69 unitssre 13436 . . . . . . 7 (0[,]1) ⊆ ℝ
7069a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℝ)
7170, 41sstrdi 3956 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℂ)
72 cnrest2 23149 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7313, 68, 71, 72mp3an2i 1468 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7463, 73mpbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1))))
755oveq2i 7380 . . 3 ((𝐽t (𝐴[,]𝐵)) Cn II) = ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))
7674, 75eleqtrrdi 2839 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II))
77 ishmeo 23622 . 2 (𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))) ↔ (𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II)))
7845, 76, 77sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3911   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  ran crn 5632  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  +crp 12927  [,]cicc 13285  t crest 17359  TopOpenctopn 17360  fldccnfld 21240  Topctop 22756  TopOnctopon 22773   Cn ccn 23087   ×t ctx 23423  Homeochmeo 23616  IIcii 24744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cn 23090  df-cnp 23091  df-tx 23425  df-hmeo 23618  df-xms 24184  df-ms 24185  df-tms 24186  df-ii 24746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator