Step | Hyp | Ref
| Expression |
1 | | icchmeoOLD.f |
. . . 4
β’ πΉ = (π₯ β (0[,]1) β¦ ((π₯ Β· π΅) + ((1 β π₯) Β· π΄))) |
2 | | iitopon 24721 |
. . . . . 6
β’ II β
(TopOnβ(0[,]1)) |
3 | 2 | a1i 11 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β II β
(TopOnβ(0[,]1))) |
4 | | icchmeoOLD.j |
. . . . . . . . . 10
β’ π½ =
(TopOpenββfld) |
5 | 4 | dfii3 24725 |
. . . . . . . . 9
β’ II =
(π½ βΎt
(0[,]1)) |
6 | 5 | oveq2i 7412 |
. . . . . . . 8
β’ (II Cn
II) = (II Cn (π½
βΎt (0[,]1))) |
7 | 4 | cnfldtop 24622 |
. . . . . . . . 9
β’ π½ β Top |
8 | | cnrest2r 23113 |
. . . . . . . . 9
β’ (π½ β Top β (II Cn (π½ βΎt (0[,]1)))
β (II Cn π½)) |
9 | 7, 8 | ax-mp 5 |
. . . . . . . 8
β’ (II Cn
(π½ βΎt
(0[,]1))) β (II Cn π½) |
10 | 6, 9 | eqsstri 4008 |
. . . . . . 7
β’ (II Cn
II) β (II Cn π½) |
11 | 3 | cnmptid 23487 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ π₯) β (II Cn II)) |
12 | 10, 11 | sselid 3972 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ π₯) β (II Cn π½)) |
13 | 4 | cnfldtopon 24621 |
. . . . . . . 8
β’ π½ β
(TopOnββ) |
14 | 13 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β π½ β
(TopOnββ)) |
15 | | simp2 1134 |
. . . . . . . 8
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β π΅ β β) |
16 | 15 | recnd 11239 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β π΅ β β) |
17 | 3, 14, 16 | cnmptc 23488 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ π΅) β (II Cn π½)) |
18 | 4 | mulcn 24705 |
. . . . . . 7
β’ Β·
β ((π½
Γt π½) Cn
π½) |
19 | 18 | a1i 11 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β Β· β ((π½ Γt π½) Cn π½)) |
20 | 3, 12, 17, 19 | cnmpt12f 23492 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ (π₯ Β· π΅)) β (II Cn π½)) |
21 | | 1cnd 11206 |
. . . . . . . 8
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β 1 β β) |
22 | 3, 14, 21 | cnmptc 23488 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ 1) β (II Cn
π½)) |
23 | 4 | subcn 24704 |
. . . . . . . 8
β’ β
β ((π½
Γt π½) Cn
π½) |
24 | 23 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β β β ((π½ Γt π½) Cn π½)) |
25 | 3, 22, 12, 24 | cnmpt12f 23492 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ (1 β π₯)) β (II Cn π½)) |
26 | | simp1 1133 |
. . . . . . . 8
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β π΄ β β) |
27 | 26 | recnd 11239 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β π΄ β β) |
28 | 3, 14, 27 | cnmptc 23488 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ π΄) β (II Cn π½)) |
29 | 3, 25, 28, 19 | cnmpt12f 23492 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ ((1 β π₯) Β· π΄)) β (II Cn π½)) |
30 | 4 | addcn 24703 |
. . . . . 6
β’ + β
((π½ Γt
π½) Cn π½) |
31 | 30 | a1i 11 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β + β ((π½ Γt π½) Cn π½)) |
32 | 3, 20, 29, 31 | cnmpt12f 23492 |
. . . 4
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β (0[,]1) β¦ ((π₯ Β· π΅) + ((1 β π₯) Β· π΄))) β (II Cn π½)) |
33 | 1, 32 | eqeltrid 2829 |
. . 3
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β πΉ β (II Cn π½)) |
34 | 1 | iccf1o 13470 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (πΉ:(0[,]1)β1-1-ontoβ(π΄[,]π΅) β§ β‘πΉ = (π¦ β (π΄[,]π΅) β¦ ((π¦ β π΄) / (π΅ β π΄))))) |
35 | 34 | simpld 494 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β πΉ:(0[,]1)β1-1-ontoβ(π΄[,]π΅)) |
36 | | f1of 6823 |
. . . . 5
β’ (πΉ:(0[,]1)β1-1-ontoβ(π΄[,]π΅) β πΉ:(0[,]1)βΆ(π΄[,]π΅)) |
37 | | frn 6714 |
. . . . 5
β’ (πΉ:(0[,]1)βΆ(π΄[,]π΅) β ran πΉ β (π΄[,]π΅)) |
38 | 35, 36, 37 | 3syl 18 |
. . . 4
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β ran πΉ β (π΄[,]π΅)) |
39 | | iccssre 13403 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β) β (π΄[,]π΅) β β) |
40 | 39 | 3adant3 1129 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π΄[,]π΅) β β) |
41 | | ax-resscn 11163 |
. . . . 5
β’ β
β β |
42 | 40, 41 | sstrdi 3986 |
. . . 4
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π΄[,]π΅) β β) |
43 | | cnrest2 23112 |
. . . 4
β’ ((π½ β (TopOnββ)
β§ ran πΉ β (π΄[,]π΅) β§ (π΄[,]π΅) β β) β (πΉ β (II Cn π½) β πΉ β (II Cn (π½ βΎt (π΄[,]π΅))))) |
44 | 13, 38, 42, 43 | mp3an2i 1462 |
. . 3
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (πΉ β (II Cn π½) β πΉ β (II Cn (π½ βΎt (π΄[,]π΅))))) |
45 | 33, 44 | mpbid 231 |
. 2
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β πΉ β (II Cn (π½ βΎt (π΄[,]π΅)))) |
46 | 34 | simprd 495 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β β‘πΉ = (π¦ β (π΄[,]π΅) β¦ ((π¦ β π΄) / (π΅ β π΄)))) |
47 | | resttopon 22987 |
. . . . . . 7
β’ ((π½ β (TopOnββ)
β§ (π΄[,]π΅) β β) β (π½ βΎt (π΄[,]π΅)) β (TopOnβ(π΄[,]π΅))) |
48 | 13, 42, 47 | sylancr 586 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π½ βΎt (π΄[,]π΅)) β (TopOnβ(π΄[,]π΅))) |
49 | | cnrest2r 23113 |
. . . . . . . . 9
β’ (π½ β Top β ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt (π΄[,]π΅))) β ((π½ βΎt (π΄[,]π΅)) Cn π½)) |
50 | 7, 49 | ax-mp 5 |
. . . . . . . 8
β’ ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt (π΄[,]π΅))) β ((π½ βΎt (π΄[,]π΅)) Cn π½) |
51 | 48 | cnmptid 23487 |
. . . . . . . 8
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π¦ β (π΄[,]π΅) β¦ π¦) β ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt (π΄[,]π΅)))) |
52 | 50, 51 | sselid 3972 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π¦ β (π΄[,]π΅) β¦ π¦) β ((π½ βΎt (π΄[,]π΅)) Cn π½)) |
53 | 48, 14, 27 | cnmptc 23488 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π¦ β (π΄[,]π΅) β¦ π΄) β ((π½ βΎt (π΄[,]π΅)) Cn π½)) |
54 | 48, 52, 53, 24 | cnmpt12f 23492 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π¦ β (π΄[,]π΅) β¦ (π¦ β π΄)) β ((π½ βΎt (π΄[,]π΅)) Cn π½)) |
55 | | difrp 13009 |
. . . . . . . . 9
β’ ((π΄ β β β§ π΅ β β) β (π΄ < π΅ β (π΅ β π΄) β
β+)) |
56 | 55 | biimp3a 1465 |
. . . . . . . 8
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π΅ β π΄) β
β+) |
57 | 56 | rpcnd 13015 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π΅ β π΄) β β) |
58 | 56 | rpne0d 13018 |
. . . . . . 7
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π΅ β π΄) β 0) |
59 | 4 | divccn 24713 |
. . . . . . 7
β’ (((π΅ β π΄) β β β§ (π΅ β π΄) β 0) β (π₯ β β β¦ (π₯ / (π΅ β π΄))) β (π½ Cn π½)) |
60 | 57, 58, 59 | syl2anc 583 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π₯ β β β¦ (π₯ / (π΅ β π΄))) β (π½ Cn π½)) |
61 | | oveq1 7408 |
. . . . . 6
β’ (π₯ = (π¦ β π΄) β (π₯ / (π΅ β π΄)) = ((π¦ β π΄) / (π΅ β π΄))) |
62 | 48, 54, 14, 60, 61 | cnmpt11 23489 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (π¦ β (π΄[,]π΅) β¦ ((π¦ β π΄) / (π΅ β π΄))) β ((π½ βΎt (π΄[,]π΅)) Cn π½)) |
63 | 46, 62 | eqeltrd 2825 |
. . . 4
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn π½)) |
64 | | dfdm4 5885 |
. . . . . . 7
β’ dom πΉ = ran β‘πΉ |
65 | 64 | eqimss2i 4035 |
. . . . . 6
β’ ran β‘πΉ β dom πΉ |
66 | | f1odm 6827 |
. . . . . . 7
β’ (πΉ:(0[,]1)β1-1-ontoβ(π΄[,]π΅) β dom πΉ = (0[,]1)) |
67 | 35, 66 | syl 17 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β dom πΉ = (0[,]1)) |
68 | 65, 67 | sseqtrid 4026 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β ran β‘πΉ β (0[,]1)) |
69 | | unitssre 13473 |
. . . . . . 7
β’ (0[,]1)
β β |
70 | 69 | a1i 11 |
. . . . . 6
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (0[,]1) β
β) |
71 | 70, 41 | sstrdi 3986 |
. . . . 5
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (0[,]1) β
β) |
72 | | cnrest2 23112 |
. . . . 5
β’ ((π½ β (TopOnββ)
β§ ran β‘πΉ β (0[,]1) β§ (0[,]1) β
β) β (β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn π½) β β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt
(0[,]1))))) |
73 | 13, 68, 71, 72 | mp3an2i 1462 |
. . . 4
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β (β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn π½) β β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt
(0[,]1))))) |
74 | 63, 73 | mpbid 231 |
. . 3
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt
(0[,]1)))) |
75 | 5 | oveq2i 7412 |
. . 3
β’ ((π½ βΎt (π΄[,]π΅)) Cn II) = ((π½ βΎt (π΄[,]π΅)) Cn (π½ βΎt
(0[,]1))) |
76 | 74, 75 | eleqtrrdi 2836 |
. 2
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn II)) |
77 | | ishmeo 23585 |
. 2
β’ (πΉ β (IIHomeo(π½ βΎt (π΄[,]π΅))) β (πΉ β (II Cn (π½ βΎt (π΄[,]π΅))) β§ β‘πΉ β ((π½ βΎt (π΄[,]π΅)) Cn II))) |
78 | 45, 76, 77 | sylanbrc 582 |
1
β’ ((π΄ β β β§ π΅ β β β§ π΄ < π΅) β πΉ β (IIHomeo(π½ βΎt (π΄[,]π΅)))) |