MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icchmeoOLD Structured version   Visualization version   GIF version

Theorem icchmeoOLD 24866
Description: Obsolete version of icchmeo 24865 as of 9-Apr-2025. (Contributed by Mario Carneiro, 8-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
icchmeoOLD.j 𝐽 = (TopOpen‘ℂfld)
icchmeoOLD.f 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
Assertion
Ref Expression
icchmeoOLD ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐽
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icchmeoOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 icchmeoOLD.f . . . 4 𝐹 = (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴)))
2 iitopon 24799 . . . . . 6 II ∈ (TopOn‘(0[,]1))
32a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → II ∈ (TopOn‘(0[,]1)))
4 icchmeoOLD.j . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
54dfii3 24803 . . . . . . . . 9 II = (𝐽t (0[,]1))
65oveq2i 7357 . . . . . . . 8 (II Cn II) = (II Cn (𝐽t (0[,]1)))
74cnfldtop 24698 . . . . . . . . 9 𝐽 ∈ Top
8 cnrest2r 23202 . . . . . . . . 9 (𝐽 ∈ Top → (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽))
97, 8ax-mp 5 . . . . . . . 8 (II Cn (𝐽t (0[,]1))) ⊆ (II Cn 𝐽)
106, 9eqsstri 3976 . . . . . . 7 (II Cn II) ⊆ (II Cn 𝐽)
113cnmptid 23576 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn II))
1210, 11sselid 3927 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝑥) ∈ (II Cn 𝐽))
134cnfldtopon 24697 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1413a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐽 ∈ (TopOn‘ℂ))
15 simp2 1137 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
1615recnd 11140 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℂ)
173, 14, 16cnmptc 23577 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐵) ∈ (II Cn 𝐽))
184mulcn 24783 . . . . . . 7 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1918a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → · ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
203, 12, 17, 19cnmpt12f 23581 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (𝑥 · 𝐵)) ∈ (II Cn 𝐽))
21 1cnd 11107 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 1 ∈ ℂ)
223, 14, 21cnmptc 23577 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 1) ∈ (II Cn 𝐽))
234subcn 24782 . . . . . . . 8 − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
2423a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → − ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
253, 22, 12, 24cnmpt12f 23581 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ (1 − 𝑥)) ∈ (II Cn 𝐽))
26 simp1 1136 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
2726recnd 11140 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℂ)
283, 14, 27cnmptc 23577 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ 𝐴) ∈ (II Cn 𝐽))
293, 25, 28, 19cnmpt12f 23581 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥) · 𝐴)) ∈ (II Cn 𝐽))
304addcn 24781 . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
3130a1i 11 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
323, 20, 29, 31cnmpt12f 23581 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ (0[,]1) ↦ ((𝑥 · 𝐵) + ((1 − 𝑥) · 𝐴))) ∈ (II Cn 𝐽))
331, 32eqeltrid 2835 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn 𝐽))
341iccf1o 13396 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) ∧ 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴)))))
3534simpld 494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵))
36 f1of 6763 . . . . 5 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → 𝐹:(0[,]1)⟶(𝐴[,]𝐵))
37 frn 6658 . . . . 5 (𝐹:(0[,]1)⟶(𝐴[,]𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
3835, 36, 373syl 18 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (𝐴[,]𝐵))
39 iccssre 13329 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
40393adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℝ)
41 ax-resscn 11063 . . . . 5 ℝ ⊆ ℂ
4240, 41sstrdi 3942 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴[,]𝐵) ⊆ ℂ)
43 cnrest2 23201 . . . 4 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (𝐴[,]𝐵) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4413, 38, 42, 43mp3an2i 1468 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ (II Cn 𝐽) ↔ 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵)))))
4533, 44mpbid 232 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))))
4634simprd 495 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 = (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))))
47 resttopon 23076 . . . . . . 7 ((𝐽 ∈ (TopOn‘ℂ) ∧ (𝐴[,]𝐵) ⊆ ℂ) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
4813, 42, 47sylancr 587 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐽t (𝐴[,]𝐵)) ∈ (TopOn‘(𝐴[,]𝐵)))
49 cnrest2r 23202 . . . . . . . . 9 (𝐽 ∈ Top → ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
507, 49ax-mp 5 . . . . . . . 8 ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))) ⊆ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽)
5148cnmptid 23576 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (𝐴[,]𝐵))))
5250, 51sselid 3927 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝑦) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5348, 14, 27cnmptc 23577 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ 𝐴) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
5448, 52, 53, 24cnmpt12f 23581 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦𝐴)) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
55 difrp 12930 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℝ+))
5655biimp3a 1471 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ+)
5756rpcnd 12936 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℂ)
5856rpne0d 12939 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ≠ 0)
594divccn 24791 . . . . . . 7 (((𝐵𝐴) ∈ ℂ ∧ (𝐵𝐴) ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
6057, 58, 59syl2anc 584 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑥 ∈ ℂ ↦ (𝑥 / (𝐵𝐴))) ∈ (𝐽 Cn 𝐽))
61 oveq1 7353 . . . . . 6 (𝑥 = (𝑦𝐴) → (𝑥 / (𝐵𝐴)) = ((𝑦𝐴) / (𝐵𝐴)))
6248, 54, 14, 60, 61cnmpt11 23578 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝑦 ∈ (𝐴[,]𝐵) ↦ ((𝑦𝐴) / (𝐵𝐴))) ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
6346, 62eqeltrd 2831 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽))
64 dfdm4 5834 . . . . . . 7 dom 𝐹 = ran 𝐹
6564eqimss2i 3991 . . . . . 6 ran 𝐹 ⊆ dom 𝐹
66 f1odm 6767 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(𝐴[,]𝐵) → dom 𝐹 = (0[,]1))
6735, 66syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → dom 𝐹 = (0[,]1))
6865, 67sseqtrid 3972 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ran 𝐹 ⊆ (0[,]1))
69 unitssre 13399 . . . . . . 7 (0[,]1) ⊆ ℝ
7069a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℝ)
7170, 41sstrdi 3942 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (0[,]1) ⊆ ℂ)
72 cnrest2 23201 . . . . 5 ((𝐽 ∈ (TopOn‘ℂ) ∧ ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ℂ) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7313, 68, 71, 72mp3an2i 1468 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn 𝐽) ↔ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))))
7463, 73mpbid 232 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1))))
755oveq2i 7357 . . 3 ((𝐽t (𝐴[,]𝐵)) Cn II) = ((𝐽t (𝐴[,]𝐵)) Cn (𝐽t (0[,]1)))
7674, 75eleqtrrdi 2842 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II))
77 ishmeo 23674 . 2 (𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))) ↔ (𝐹 ∈ (II Cn (𝐽t (𝐴[,]𝐵))) ∧ 𝐹 ∈ ((𝐽t (𝐴[,]𝐵)) Cn II)))
7845, 76, 77sylanbrc 583 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐹 ∈ (IIHomeo(𝐽t (𝐴[,]𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wss 3897   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344   / cdiv 11774  +crp 12890  [,]cicc 13248  t crest 17324  TopOpenctopn 17325  fldccnfld 21291  Topctop 22808  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475  Homeochmeo 23668  IIcii 24795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-ii 24797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator