Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Structured version   Visualization version   GIF version

Theorem climsuselem1 43148
Description: The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1 𝑍 = (ℤ𝑀)
climsuselem1.2 (𝜑𝑀 ∈ ℤ)
climsuselem1.3 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuselem1.4 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
Assertion
Ref Expression
climsuselem1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐾(𝑘)

Proof of Theorem climsuselem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5 𝑍 = (ℤ𝑀)
21eleq2i 2830 . . . 4 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
32biimpi 215 . . 3 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
43adantl 482 . 2 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
5 simpl 483 . 2 ((𝜑𝐾𝑍) → 𝜑)
6 fveq2 6774 . . . . 5 (𝑗 = 𝑀 → (𝐼𝑗) = (𝐼𝑀))
7 fveq2 6774 . . . . 5 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
86, 7eleq12d 2833 . . . 4 (𝑗 = 𝑀 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑀) ∈ (ℤ𝑀)))
98imbi2d 341 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))))
10 fveq2 6774 . . . . 5 (𝑗 = 𝑘 → (𝐼𝑗) = (𝐼𝑘))
11 fveq2 6774 . . . . 5 (𝑗 = 𝑘 → (ℤ𝑗) = (ℤ𝑘))
1210, 11eleq12d 2833 . . . 4 (𝑗 = 𝑘 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑘) ∈ (ℤ𝑘)))
1312imbi2d 341 . . 3 (𝑗 = 𝑘 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))))
14 fveq2 6774 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐼𝑗) = (𝐼‘(𝑘 + 1)))
15 fveq2 6774 . . . . 5 (𝑗 = (𝑘 + 1) → (ℤ𝑗) = (ℤ‘(𝑘 + 1)))
1614, 15eleq12d 2833 . . . 4 (𝑗 = (𝑘 + 1) → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1))))
1716imbi2d 341 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
18 fveq2 6774 . . . . 5 (𝑗 = 𝐾 → (𝐼𝑗) = (𝐼𝐾))
19 fveq2 6774 . . . . 5 (𝑗 = 𝐾 → (ℤ𝑗) = (ℤ𝐾))
2018, 19eleq12d 2833 . . . 4 (𝑗 = 𝐾 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝐾) ∈ (ℤ𝐾)))
2120imbi2d 341 . . 3 (𝑗 = 𝐾 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾))))
22 climsuselem1.3 . . . . 5 (𝜑 → (𝐼𝑀) ∈ 𝑍)
2322, 1eleqtrdi 2849 . . . 4 (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))
2423a1i 11 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀)))
25 simpr 485 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝜑)
26 simpll 764 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝑘 ∈ (ℤ𝑀))
27 simplr 766 . . . . . 6 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)))
2825, 27mpd 15 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼𝑘) ∈ (ℤ𝑘))
29 eluzelz 12592 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
30293ad2ant2 1133 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
3130peano2zd 12429 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℤ)
3231zred 12426 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℝ)
33 eluzelre 12593 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → (𝐼𝑘) ∈ ℝ)
34333ad2ant3 1134 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼𝑘) ∈ ℝ)
35 1red 10976 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 1 ∈ ℝ)
3634, 35readdcld 11004 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ∈ ℝ)
371eqimss2i 3980 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ 𝑍
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝑀) ⊆ 𝑍)
3938sseld 3920 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍))
4039imdistani 569 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝜑𝑘𝑍))
41 climsuselem1.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
43423adant3 1131 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
44 eluzelz 12592 . . . . . . . . 9 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4645zred 12426 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℝ)
4730zred 12426 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
48 eluzle 12595 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → 𝑘 ≤ (𝐼𝑘))
49483ad2ant3 1134 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ≤ (𝐼𝑘))
5047, 34, 35, 49leadd1dd 11589 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ ((𝐼𝑘) + 1))
51 eluzle 12595 . . . . . . . 8 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5243, 51syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5332, 36, 46, 50, 52letrd 11132 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))
54 eluz 12596 . . . . . . 7 (((𝑘 + 1) ∈ ℤ ∧ (𝐼‘(𝑘 + 1)) ∈ ℤ) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5531, 45, 54syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5653, 55mpbird 256 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5725, 26, 28, 56syl3anc 1370 . . . 4 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5857exp31 420 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)) → (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
599, 13, 17, 21, 24, 58uzind4 12646 . 2 (𝐾 ∈ (ℤ𝑀) → (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾)))
604, 5, 59sylc 65 1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  1c1 10872   + caddc 10874  cle 11010  cz 12319  cuz 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583
This theorem is referenced by:  climsuse  43149
  Copyright terms: Public domain W3C validator