Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Structured version   Visualization version   GIF version

Theorem climsuselem1 43038
Description: The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1 𝑍 = (ℤ𝑀)
climsuselem1.2 (𝜑𝑀 ∈ ℤ)
climsuselem1.3 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuselem1.4 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
Assertion
Ref Expression
climsuselem1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐾(𝑘)

Proof of Theorem climsuselem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5 𝑍 = (ℤ𝑀)
21eleq2i 2830 . . . 4 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
32biimpi 215 . . 3 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
43adantl 481 . 2 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
5 simpl 482 . 2 ((𝜑𝐾𝑍) → 𝜑)
6 fveq2 6756 . . . . 5 (𝑗 = 𝑀 → (𝐼𝑗) = (𝐼𝑀))
7 fveq2 6756 . . . . 5 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
86, 7eleq12d 2833 . . . 4 (𝑗 = 𝑀 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑀) ∈ (ℤ𝑀)))
98imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))))
10 fveq2 6756 . . . . 5 (𝑗 = 𝑘 → (𝐼𝑗) = (𝐼𝑘))
11 fveq2 6756 . . . . 5 (𝑗 = 𝑘 → (ℤ𝑗) = (ℤ𝑘))
1210, 11eleq12d 2833 . . . 4 (𝑗 = 𝑘 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑘) ∈ (ℤ𝑘)))
1312imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))))
14 fveq2 6756 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐼𝑗) = (𝐼‘(𝑘 + 1)))
15 fveq2 6756 . . . . 5 (𝑗 = (𝑘 + 1) → (ℤ𝑗) = (ℤ‘(𝑘 + 1)))
1614, 15eleq12d 2833 . . . 4 (𝑗 = (𝑘 + 1) → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1))))
1716imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
18 fveq2 6756 . . . . 5 (𝑗 = 𝐾 → (𝐼𝑗) = (𝐼𝐾))
19 fveq2 6756 . . . . 5 (𝑗 = 𝐾 → (ℤ𝑗) = (ℤ𝐾))
2018, 19eleq12d 2833 . . . 4 (𝑗 = 𝐾 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝐾) ∈ (ℤ𝐾)))
2120imbi2d 340 . . 3 (𝑗 = 𝐾 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾))))
22 climsuselem1.3 . . . . 5 (𝜑 → (𝐼𝑀) ∈ 𝑍)
2322, 1eleqtrdi 2849 . . . 4 (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))
2423a1i 11 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀)))
25 simpr 484 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝜑)
26 simpll 763 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝑘 ∈ (ℤ𝑀))
27 simplr 765 . . . . . 6 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)))
2825, 27mpd 15 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼𝑘) ∈ (ℤ𝑘))
29 eluzelz 12521 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
30293ad2ant2 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
3130peano2zd 12358 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℤ)
3231zred 12355 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℝ)
33 eluzelre 12522 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → (𝐼𝑘) ∈ ℝ)
34333ad2ant3 1133 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼𝑘) ∈ ℝ)
35 1red 10907 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 1 ∈ ℝ)
3634, 35readdcld 10935 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ∈ ℝ)
371eqimss2i 3976 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ 𝑍
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝑀) ⊆ 𝑍)
3938sseld 3916 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍))
4039imdistani 568 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝜑𝑘𝑍))
41 climsuselem1.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
43423adant3 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
44 eluzelz 12521 . . . . . . . . 9 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4645zred 12355 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℝ)
4730zred 12355 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
48 eluzle 12524 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → 𝑘 ≤ (𝐼𝑘))
49483ad2ant3 1133 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ≤ (𝐼𝑘))
5047, 34, 35, 49leadd1dd 11519 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ ((𝐼𝑘) + 1))
51 eluzle 12524 . . . . . . . 8 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5243, 51syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5332, 36, 46, 50, 52letrd 11062 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))
54 eluz 12525 . . . . . . 7 (((𝑘 + 1) ∈ ℤ ∧ (𝐼‘(𝑘 + 1)) ∈ ℤ) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5531, 45, 54syl2anc 583 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5653, 55mpbird 256 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5725, 26, 28, 56syl3anc 1369 . . . 4 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5857exp31 419 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)) → (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
599, 13, 17, 21, 24, 58uzind4 12575 . 2 (𝐾 ∈ (ℤ𝑀) → (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾)))
604, 5, 59sylc 65 1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  cle 10941  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  climsuse  43039
  Copyright terms: Public domain W3C validator