Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Structured version   Visualization version   GIF version

Theorem climsuselem1 45605
Description: The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1 𝑍 = (ℤ𝑀)
climsuselem1.2 (𝜑𝑀 ∈ ℤ)
climsuselem1.3 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuselem1.4 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
Assertion
Ref Expression
climsuselem1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐾(𝑘)

Proof of Theorem climsuselem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5 𝑍 = (ℤ𝑀)
21eleq2i 2820 . . . 4 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
32biimpi 216 . . 3 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
43adantl 481 . 2 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
5 simpl 482 . 2 ((𝜑𝐾𝑍) → 𝜑)
6 fveq2 6858 . . . . 5 (𝑗 = 𝑀 → (𝐼𝑗) = (𝐼𝑀))
7 fveq2 6858 . . . . 5 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
86, 7eleq12d 2822 . . . 4 (𝑗 = 𝑀 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑀) ∈ (ℤ𝑀)))
98imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))))
10 fveq2 6858 . . . . 5 (𝑗 = 𝑘 → (𝐼𝑗) = (𝐼𝑘))
11 fveq2 6858 . . . . 5 (𝑗 = 𝑘 → (ℤ𝑗) = (ℤ𝑘))
1210, 11eleq12d 2822 . . . 4 (𝑗 = 𝑘 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑘) ∈ (ℤ𝑘)))
1312imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))))
14 fveq2 6858 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐼𝑗) = (𝐼‘(𝑘 + 1)))
15 fveq2 6858 . . . . 5 (𝑗 = (𝑘 + 1) → (ℤ𝑗) = (ℤ‘(𝑘 + 1)))
1614, 15eleq12d 2822 . . . 4 (𝑗 = (𝑘 + 1) → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1))))
1716imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
18 fveq2 6858 . . . . 5 (𝑗 = 𝐾 → (𝐼𝑗) = (𝐼𝐾))
19 fveq2 6858 . . . . 5 (𝑗 = 𝐾 → (ℤ𝑗) = (ℤ𝐾))
2018, 19eleq12d 2822 . . . 4 (𝑗 = 𝐾 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝐾) ∈ (ℤ𝐾)))
2120imbi2d 340 . . 3 (𝑗 = 𝐾 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾))))
22 climsuselem1.3 . . . . 5 (𝜑 → (𝐼𝑀) ∈ 𝑍)
2322, 1eleqtrdi 2838 . . . 4 (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))
2423a1i 11 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀)))
25 simpr 484 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝜑)
26 simpll 766 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝑘 ∈ (ℤ𝑀))
27 simplr 768 . . . . . 6 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)))
2825, 27mpd 15 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼𝑘) ∈ (ℤ𝑘))
29 eluzelz 12803 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
3130peano2zd 12641 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℤ)
3231zred 12638 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℝ)
33 eluzelre 12804 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → (𝐼𝑘) ∈ ℝ)
34333ad2ant3 1135 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼𝑘) ∈ ℝ)
35 1red 11175 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 1 ∈ ℝ)
3634, 35readdcld 11203 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ∈ ℝ)
371eqimss2i 4008 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ 𝑍
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝑀) ⊆ 𝑍)
3938sseld 3945 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍))
4039imdistani 568 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝜑𝑘𝑍))
41 climsuselem1.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
43423adant3 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
44 eluzelz 12803 . . . . . . . . 9 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4645zred 12638 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℝ)
4730zred 12638 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
48 eluzle 12806 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → 𝑘 ≤ (𝐼𝑘))
49483ad2ant3 1135 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ≤ (𝐼𝑘))
5047, 34, 35, 49leadd1dd 11792 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ ((𝐼𝑘) + 1))
51 eluzle 12806 . . . . . . . 8 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5243, 51syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5332, 36, 46, 50, 52letrd 11331 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))
54 eluz 12807 . . . . . . 7 (((𝑘 + 1) ∈ ℤ ∧ (𝐼‘(𝑘 + 1)) ∈ ℤ) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5531, 45, 54syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5653, 55mpbird 257 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5725, 26, 28, 56syl3anc 1373 . . . 4 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5857exp31 419 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)) → (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
599, 13, 17, 21, 24, 58uzind4 12865 . 2 (𝐾 ∈ (ℤ𝑀) → (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾)))
604, 5, 59sylc 65 1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071  cle 11209  cz 12529  cuz 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794
This theorem is referenced by:  climsuse  45606
  Copyright terms: Public domain W3C validator