Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Structured version   Visualization version   GIF version

Theorem climsuselem1 44309
Description: The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1 𝑍 = (ℤ𝑀)
climsuselem1.2 (𝜑𝑀 ∈ ℤ)
climsuselem1.3 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuselem1.4 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
Assertion
Ref Expression
climsuselem1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐾(𝑘)

Proof of Theorem climsuselem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5 𝑍 = (ℤ𝑀)
21eleq2i 2825 . . . 4 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
32biimpi 215 . . 3 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
43adantl 482 . 2 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
5 simpl 483 . 2 ((𝜑𝐾𝑍) → 𝜑)
6 fveq2 6888 . . . . 5 (𝑗 = 𝑀 → (𝐼𝑗) = (𝐼𝑀))
7 fveq2 6888 . . . . 5 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
86, 7eleq12d 2827 . . . 4 (𝑗 = 𝑀 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑀) ∈ (ℤ𝑀)))
98imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))))
10 fveq2 6888 . . . . 5 (𝑗 = 𝑘 → (𝐼𝑗) = (𝐼𝑘))
11 fveq2 6888 . . . . 5 (𝑗 = 𝑘 → (ℤ𝑗) = (ℤ𝑘))
1210, 11eleq12d 2827 . . . 4 (𝑗 = 𝑘 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑘) ∈ (ℤ𝑘)))
1312imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))))
14 fveq2 6888 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐼𝑗) = (𝐼‘(𝑘 + 1)))
15 fveq2 6888 . . . . 5 (𝑗 = (𝑘 + 1) → (ℤ𝑗) = (ℤ‘(𝑘 + 1)))
1614, 15eleq12d 2827 . . . 4 (𝑗 = (𝑘 + 1) → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1))))
1716imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
18 fveq2 6888 . . . . 5 (𝑗 = 𝐾 → (𝐼𝑗) = (𝐼𝐾))
19 fveq2 6888 . . . . 5 (𝑗 = 𝐾 → (ℤ𝑗) = (ℤ𝐾))
2018, 19eleq12d 2827 . . . 4 (𝑗 = 𝐾 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝐾) ∈ (ℤ𝐾)))
2120imbi2d 340 . . 3 (𝑗 = 𝐾 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾))))
22 climsuselem1.3 . . . . 5 (𝜑 → (𝐼𝑀) ∈ 𝑍)
2322, 1eleqtrdi 2843 . . . 4 (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))
2423a1i 11 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀)))
25 simpr 485 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝜑)
26 simpll 765 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝑘 ∈ (ℤ𝑀))
27 simplr 767 . . . . . 6 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)))
2825, 27mpd 15 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼𝑘) ∈ (ℤ𝑘))
29 eluzelz 12828 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
30293ad2ant2 1134 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
3130peano2zd 12665 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℤ)
3231zred 12662 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℝ)
33 eluzelre 12829 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → (𝐼𝑘) ∈ ℝ)
34333ad2ant3 1135 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼𝑘) ∈ ℝ)
35 1red 11211 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 1 ∈ ℝ)
3634, 35readdcld 11239 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ∈ ℝ)
371eqimss2i 4042 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ 𝑍
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝑀) ⊆ 𝑍)
3938sseld 3980 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍))
4039imdistani 569 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝜑𝑘𝑍))
41 climsuselem1.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
43423adant3 1132 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
44 eluzelz 12828 . . . . . . . . 9 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4645zred 12662 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℝ)
4730zred 12662 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
48 eluzle 12831 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → 𝑘 ≤ (𝐼𝑘))
49483ad2ant3 1135 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ≤ (𝐼𝑘))
5047, 34, 35, 49leadd1dd 11824 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ ((𝐼𝑘) + 1))
51 eluzle 12831 . . . . . . . 8 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5243, 51syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5332, 36, 46, 50, 52letrd 11367 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))
54 eluz 12832 . . . . . . 7 (((𝑘 + 1) ∈ ℤ ∧ (𝐼‘(𝑘 + 1)) ∈ ℤ) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5531, 45, 54syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5653, 55mpbird 256 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5725, 26, 28, 56syl3anc 1371 . . . 4 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5857exp31 420 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)) → (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
599, 13, 17, 21, 24, 58uzind4 12886 . 2 (𝐾 ∈ (ℤ𝑀) → (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾)))
604, 5, 59sylc 65 1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3947   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109  cle 11245  cz 12554  cuz 12818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819
This theorem is referenced by:  climsuse  44310
  Copyright terms: Public domain W3C validator