Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Structured version   Visualization version   GIF version

Theorem climsuselem1 45563
Description: The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1 𝑍 = (ℤ𝑀)
climsuselem1.2 (𝜑𝑀 ∈ ℤ)
climsuselem1.3 (𝜑 → (𝐼𝑀) ∈ 𝑍)
climsuselem1.4 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
Assertion
Ref Expression
climsuselem1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐾(𝑘)

Proof of Theorem climsuselem1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5 𝑍 = (ℤ𝑀)
21eleq2i 2831 . . . 4 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
32biimpi 216 . . 3 (𝐾𝑍𝐾 ∈ (ℤ𝑀))
43adantl 481 . 2 ((𝜑𝐾𝑍) → 𝐾 ∈ (ℤ𝑀))
5 simpl 482 . 2 ((𝜑𝐾𝑍) → 𝜑)
6 fveq2 6907 . . . . 5 (𝑗 = 𝑀 → (𝐼𝑗) = (𝐼𝑀))
7 fveq2 6907 . . . . 5 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
86, 7eleq12d 2833 . . . 4 (𝑗 = 𝑀 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑀) ∈ (ℤ𝑀)))
98imbi2d 340 . . 3 (𝑗 = 𝑀 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))))
10 fveq2 6907 . . . . 5 (𝑗 = 𝑘 → (𝐼𝑗) = (𝐼𝑘))
11 fveq2 6907 . . . . 5 (𝑗 = 𝑘 → (ℤ𝑗) = (ℤ𝑘))
1210, 11eleq12d 2833 . . . 4 (𝑗 = 𝑘 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝑘) ∈ (ℤ𝑘)))
1312imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))))
14 fveq2 6907 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐼𝑗) = (𝐼‘(𝑘 + 1)))
15 fveq2 6907 . . . . 5 (𝑗 = (𝑘 + 1) → (ℤ𝑗) = (ℤ‘(𝑘 + 1)))
1614, 15eleq12d 2833 . . . 4 (𝑗 = (𝑘 + 1) → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1))))
1716imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
18 fveq2 6907 . . . . 5 (𝑗 = 𝐾 → (𝐼𝑗) = (𝐼𝐾))
19 fveq2 6907 . . . . 5 (𝑗 = 𝐾 → (ℤ𝑗) = (ℤ𝐾))
2018, 19eleq12d 2833 . . . 4 (𝑗 = 𝐾 → ((𝐼𝑗) ∈ (ℤ𝑗) ↔ (𝐼𝐾) ∈ (ℤ𝐾)))
2120imbi2d 340 . . 3 (𝑗 = 𝐾 → ((𝜑 → (𝐼𝑗) ∈ (ℤ𝑗)) ↔ (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾))))
22 climsuselem1.3 . . . . 5 (𝜑 → (𝐼𝑀) ∈ 𝑍)
2322, 1eleqtrdi 2849 . . . 4 (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀))
2423a1i 11 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐼𝑀) ∈ (ℤ𝑀)))
25 simpr 484 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝜑)
26 simpll 767 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → 𝑘 ∈ (ℤ𝑀))
27 simplr 769 . . . . . 6 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)))
2825, 27mpd 15 . . . . 5 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼𝑘) ∈ (ℤ𝑘))
29 eluzelz 12886 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
30293ad2ant2 1133 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℤ)
3130peano2zd 12723 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℤ)
3231zred 12720 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ∈ ℝ)
33 eluzelre 12887 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → (𝐼𝑘) ∈ ℝ)
34333ad2ant3 1134 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼𝑘) ∈ ℝ)
35 1red 11260 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 1 ∈ ℝ)
3634, 35readdcld 11288 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ∈ ℝ)
371eqimss2i 4057 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ 𝑍
3837a1i 11 . . . . . . . . . . . . 13 (𝜑 → (ℤ𝑀) ⊆ 𝑍)
3938sseld 3994 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘𝑍))
4039imdistani 568 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝜑𝑘𝑍))
41 climsuselem1.4 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
4240, 41syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
43423adant3 1131 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))
44 eluzelz 12886 . . . . . . . . 9 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4543, 44syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℤ)
4645zred 12720 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ ℝ)
4730zred 12720 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ∈ ℝ)
48 eluzle 12889 . . . . . . . . 9 ((𝐼𝑘) ∈ (ℤ𝑘) → 𝑘 ≤ (𝐼𝑘))
49483ad2ant3 1134 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → 𝑘 ≤ (𝐼𝑘))
5047, 34, 35, 49leadd1dd 11875 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ ((𝐼𝑘) + 1))
51 eluzle 12889 . . . . . . . 8 ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5243, 51syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼𝑘) + 1) ≤ (𝐼‘(𝑘 + 1)))
5332, 36, 46, 50, 52letrd 11416 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1)))
54 eluz 12890 . . . . . . 7 (((𝑘 + 1) ∈ ℤ ∧ (𝐼‘(𝑘 + 1)) ∈ ℤ) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5531, 45, 54syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → ((𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)) ↔ (𝑘 + 1) ≤ (𝐼‘(𝑘 + 1))))
5653, 55mpbird 257 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀) ∧ (𝐼𝑘) ∈ (ℤ𝑘)) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5725, 26, 28, 56syl3anc 1370 . . . 4 (((𝑘 ∈ (ℤ𝑀) ∧ (𝜑 → (𝐼𝑘) ∈ (ℤ𝑘))) ∧ 𝜑) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))
5857exp31 419 . . 3 (𝑘 ∈ (ℤ𝑀) → ((𝜑 → (𝐼𝑘) ∈ (ℤ𝑘)) → (𝜑 → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘(𝑘 + 1)))))
599, 13, 17, 21, 24, 58uzind4 12946 . 2 (𝐾 ∈ (ℤ𝑀) → (𝜑 → (𝐼𝐾) ∈ (ℤ𝐾)))
604, 5, 59sylc 65 1 ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156  cle 11294  cz 12611  cuz 12876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877
This theorem is referenced by:  climsuse  45564
  Copyright terms: Public domain W3C validator