Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfvlem Structured version   Visualization version   GIF version

Theorem cycpmfvlem 32991
Description: Lemma for cycpmfv1 32992 and cycpmfv2 32993. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfvlem.1 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
cycpmfvlem (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))

Proof of Theorem cycpmfvlem
StepHypRef Expression
1 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . . 4 (𝜑𝐷𝑉)
3 tocycfv.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . . 4 (𝜑𝑊:dom 𝑊1-1𝐷)
51, 2, 3, 4tocycfv 32988 . . 3 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
65fveq1d 6892 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘(𝑊𝑁)))
7 f1oi 6870 . . . 4 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
8 f1ofn 6833 . . . 4 (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
97, 8mp1i 13 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
10 1zzd 12636 . . . . . 6 (𝜑 → 1 ∈ ℤ)
11 cshwf 14800 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
123, 10, 11syl2anc 582 . . . . 5 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
1312ffnd 6718 . . . 4 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
14 df-f1 6548 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
154, 14sylib 217 . . . . . . 7 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1615simprd 494 . . . . . 6 (𝜑 → Fun 𝑊)
1716funfnd 6579 . . . . 5 (𝜑𝑊 Fn dom 𝑊)
18 df-rn 5683 . . . . . 6 ran 𝑊 = dom 𝑊
1918fneq2i 6647 . . . . 5 (𝑊 Fn ran 𝑊𝑊 Fn dom 𝑊)
2017, 19sylibr 233 . . . 4 (𝜑𝑊 Fn ran 𝑊)
21 dfdm4 5892 . . . . . 6 dom 𝑊 = ran 𝑊
2221eqimss2i 4040 . . . . 5 ran 𝑊 ⊆ dom 𝑊
23 wrdfn 14528 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
243, 23syl 17 . . . . . 6 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
2524fndmd 6654 . . . . 5 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2622, 25sseqtrid 4031 . . . 4 (𝜑 → ran 𝑊 ⊆ (0..^(♯‘𝑊)))
27 fnco 6667 . . . 4 (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ 𝑊 Fn ran 𝑊 ∧ ran 𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
2813, 20, 26, 27syl3anc 1368 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
29 disjdifr 4467 . . . 4 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3029a1i 11 . . 3 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
31 cycpmfvlem.1 . . . 4 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
32 fnfvelrn 7083 . . . 4 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
3324, 31, 32syl2anc 582 . . 3 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
34 fvun2 6983 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ (𝑊𝑁) ∈ ran 𝑊)) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
359, 28, 30, 33, 34syl112anc 1371 . 2 (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
366, 35eqtrd 2766 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cdif 3943  cun 3944  cin 3945  wss 3946  c0 4322   I cid 5569  ccnv 5671  dom cdm 5672  ran crn 5673  cres 5674  ccom 5676  Fun wfun 6537   Fn wfn 6538  wf 6539  1-1wf1 6540  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7413  0cc0 11146  1c1 11147  cz 12601  ..^cfzo 13672  chash 14339  Word cword 14514   cyclShift ccsh 14788  toCycctocyc 32985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9475  df-inf 9476  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-n0 12516  df-z 12602  df-uz 12866  df-rp 13020  df-fz 13530  df-fzo 13673  df-fl 13803  df-mod 13881  df-hash 14340  df-word 14515  df-concat 14571  df-substr 14641  df-pfx 14671  df-csh 14789  df-tocyc 32986
This theorem is referenced by:  cycpmfv1  32992  cycpmfv2  32993
  Copyright terms: Public domain W3C validator