Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cycpmfvlem Structured version   Visualization version   GIF version

Theorem cycpmfvlem 30365
Description: Lemma for cycpmfv1 30366 and cycpmfv2 30367. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
cycpmfvlem.1 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
Assertion
Ref Expression
cycpmfvlem (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))

Proof of Theorem cycpmfvlem
StepHypRef Expression
1 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
2 tocycfv.d . . . 4 (𝜑𝐷𝑉)
3 tocycfv.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
4 tocycfv.1 . . . 4 (𝜑𝑊:dom 𝑊1-1𝐷)
51, 2, 3, 4tocycfv 30362 . . 3 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
65fveq1d 6532 . 2 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘(𝑊𝑁)))
7 f1oi 6512 . . . 4 ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊)
8 f1ofn 6476 . . . 4 (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
97, 8mp1i 13 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊))
10 1zzd 11851 . . . . . 6 (𝜑 → 1 ∈ ℤ)
11 cshwf 13986 . . . . . 6 ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
123, 10, 11syl2anc 584 . . . . 5 (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷)
1312ffnd 6375 . . . 4 (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)))
14 df-f1 6222 . . . . . . . 8 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
154, 14sylib 219 . . . . . . 7 (𝜑 → (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
1615simprd 496 . . . . . 6 (𝜑 → Fun 𝑊)
1716funfnd 6248 . . . . 5 (𝜑𝑊 Fn dom 𝑊)
18 df-rn 5446 . . . . . 6 ran 𝑊 = dom 𝑊
1918fneq2i 6313 . . . . 5 (𝑊 Fn ran 𝑊𝑊 Fn dom 𝑊)
2017, 19sylibr 235 . . . 4 (𝜑𝑊 Fn ran 𝑊)
21 dfdm4 5642 . . . . . 6 dom 𝑊 = ran 𝑊
2221eqimss2i 3942 . . . . 5 ran 𝑊 ⊆ dom 𝑊
23 wrdfn 13710 . . . . . . 7 (𝑊 ∈ Word 𝐷𝑊 Fn (0..^(♯‘𝑊)))
243, 23syl 17 . . . . . 6 (𝜑𝑊 Fn (0..^(♯‘𝑊)))
2524fndmd 6318 . . . . 5 (𝜑 → dom 𝑊 = (0..^(♯‘𝑊)))
2622, 25sseqtrid 3935 . . . 4 (𝜑 → ran 𝑊 ⊆ (0..^(♯‘𝑊)))
27 fnco 6327 . . . 4 (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ 𝑊 Fn ran 𝑊 ∧ ran 𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
2813, 20, 26, 27syl3anc 1362 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊)
29 incom 4094 . . . . 5 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊)
30 disjdif 4329 . . . . 5 (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ∅
3129, 30eqtr3i 2819 . . . 4 ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅
3231a1i 11 . . 3 (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅)
33 cycpmfvlem.1 . . . 4 (𝜑𝑁 ∈ (0..^(♯‘𝑊)))
34 fnfvelrn 6704 . . . 4 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊𝑁) ∈ ran 𝑊)
3524, 33, 34syl2anc 584 . . 3 (𝜑 → (𝑊𝑁) ∈ ran 𝑊)
36 fvun2 6614 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ 𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ (𝑊𝑁) ∈ ran 𝑊)) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
379, 28, 32, 35, 36syl112anc 1365 . 2 (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊))‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
386, 37eqtrd 2829 1 (𝜑 → ((𝐶𝑊)‘(𝑊𝑁)) = (((𝑊 cyclShift 1) ∘ 𝑊)‘(𝑊𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1520  wcel 2079  cdif 3851  cun 3852  cin 3853  wss 3854  c0 4206   I cid 5339  ccnv 5434  dom cdm 5435  ran crn 5436  cres 5437  ccom 5439  Fun wfun 6211   Fn wfn 6212  wf 6213  1-1wf1 6214  1-1-ontowf1o 6216  cfv 6217  (class class class)co 7007  0cc0 10372  1c1 10373  cz 11818  ..^cfzo 12872  chash 13528  Word cword 13695   cyclShift ccsh 13974  toCycctocyc 30359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-om 7428  df-1st 7536  df-2nd 7537  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-er 8130  df-map 8249  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-sup 8742  df-inf 8743  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-n0 11735  df-z 11819  df-uz 12083  df-rp 12229  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-hash 13529  df-word 13696  df-concat 13757  df-substr 13827  df-pfx 13857  df-csh 13975  df-tocyc 30360
This theorem is referenced by:  cycpmfv1  30366  cycpmfv2  30367
  Copyright terms: Public domain W3C validator