Step | Hyp | Ref
| Expression |
1 | | nnuz 12867 |
. . . 4
β’ β =
(β€β₯β1) |
2 | | 1zzd 12595 |
. . . 4
β’ (β€
β 1 β β€) |
3 | | ax-1cn 11170 |
. . . . 5
β’ 1 β
β |
4 | 1 | eqimss2i 4043 |
. . . . . 6
β’
(β€β₯β1) β β |
5 | | nnex 12220 |
. . . . . 6
β’ β
β V |
6 | 4, 5 | climconst2 15494 |
. . . . 5
β’ ((1
β β β§ 1 β β€) β (β Γ {1}) β
1) |
7 | 3, 2, 6 | sylancr 587 |
. . . 4
β’ (β€
β (β Γ {1}) β 1) |
8 | | ovexd 7446 |
. . . 4
β’ (β€
β ((β Γ {1}) βf + ((β Γ {π΄}) βf Β·
πΊ)) β
V) |
9 | | basellem7.2 |
. . . . . . 7
β’ π΄ β β |
10 | 4, 5 | climconst2 15494 |
. . . . . . 7
β’ ((π΄ β β β§ 1 β
β€) β (β Γ {π΄}) β π΄) |
11 | 9, 2, 10 | sylancr 587 |
. . . . . 6
β’ (β€
β (β Γ {π΄}) β π΄) |
12 | | ovexd 7446 |
. . . . . 6
β’ (β€
β ((β Γ {π΄}) βf Β· πΊ) β V) |
13 | | basel.g |
. . . . . . . 8
β’ πΊ = (π β β β¦ (1 / ((2 Β·
π) + 1))) |
14 | 13 | basellem6 26597 |
. . . . . . 7
β’ πΊ β 0 |
15 | 14 | a1i 11 |
. . . . . 6
β’ (β€
β πΊ β
0) |
16 | 9 | elexi 3493 |
. . . . . . . . 9
β’ π΄ β V |
17 | 16 | fconst 6777 |
. . . . . . . 8
β’ (β
Γ {π΄}):ββΆ{π΄} |
18 | 9 | a1i 11 |
. . . . . . . . 9
β’ (β€
β π΄ β
β) |
19 | 18 | snssd 4812 |
. . . . . . . 8
β’ (β€
β {π΄} β
β) |
20 | | fss 6734 |
. . . . . . . 8
β’
(((β Γ {π΄}):ββΆ{π΄} β§ {π΄} β β) β (β Γ
{π΄}):ββΆβ) |
21 | 17, 19, 20 | sylancr 587 |
. . . . . . 7
β’ (β€
β (β Γ {π΄}):ββΆβ) |
22 | 21 | ffvelcdmda 7086 |
. . . . . 6
β’
((β€ β§ π
β β) β ((β Γ {π΄})βπ) β β) |
23 | | 2nn 12287 |
. . . . . . . . . . . . 13
β’ 2 β
β |
24 | 23 | a1i 11 |
. . . . . . . . . . . 12
β’ (β€
β 2 β β) |
25 | | nnmulcl 12238 |
. . . . . . . . . . . 12
β’ ((2
β β β§ π
β β) β (2 Β· π) β β) |
26 | 24, 25 | sylan 580 |
. . . . . . . . . . 11
β’
((β€ β§ π
β β) β (2 Β· π) β β) |
27 | 26 | peano2nnd 12231 |
. . . . . . . . . 10
β’
((β€ β§ π
β β) β ((2 Β· π) + 1) β β) |
28 | 27 | nnrecred 12265 |
. . . . . . . . 9
β’
((β€ β§ π
β β) β (1 / ((2 Β· π) + 1)) β β) |
29 | 28 | recnd 11244 |
. . . . . . . 8
β’
((β€ β§ π
β β) β (1 / ((2 Β· π) + 1)) β β) |
30 | 29, 13 | fmptd 7115 |
. . . . . . 7
β’ (β€
β πΊ:ββΆβ) |
31 | 30 | ffvelcdmda 7086 |
. . . . . 6
β’
((β€ β§ π
β β) β (πΊβπ) β β) |
32 | 21 | ffnd 6718 |
. . . . . . 7
β’ (β€
β (β Γ {π΄}) Fn β) |
33 | 30 | ffnd 6718 |
. . . . . . 7
β’ (β€
β πΊ Fn
β) |
34 | 5 | a1i 11 |
. . . . . . 7
β’ (β€
β β β V) |
35 | | inidm 4218 |
. . . . . . 7
β’ (β
β© β) = β |
36 | | eqidd 2733 |
. . . . . . 7
β’
((β€ β§ π
β β) β ((β Γ {π΄})βπ) = ((β Γ {π΄})βπ)) |
37 | | eqidd 2733 |
. . . . . . 7
β’
((β€ β§ π
β β) β (πΊβπ) = (πΊβπ)) |
38 | 32, 33, 34, 34, 35, 36, 37 | ofval 7683 |
. . . . . 6
β’
((β€ β§ π
β β) β (((β Γ {π΄}) βf Β· πΊ)βπ) = (((β Γ {π΄})βπ) Β· (πΊβπ))) |
39 | 1, 2, 11, 12, 15, 22, 31, 38 | climmul 15579 |
. . . . 5
β’ (β€
β ((β Γ {π΄}) βf Β· πΊ) β (π΄ Β· 0)) |
40 | 9 | mul01i 11406 |
. . . . 5
β’ (π΄ Β· 0) =
0 |
41 | 39, 40 | breqtrdi 5189 |
. . . 4
β’ (β€
β ((β Γ {π΄}) βf Β· πΊ) β 0) |
42 | | 1ex 11212 |
. . . . . . 7
β’ 1 β
V |
43 | 42 | fconst 6777 |
. . . . . 6
β’ (β
Γ {1}):ββΆ{1} |
44 | 3 | a1i 11 |
. . . . . . 7
β’ (β€
β 1 β β) |
45 | 44 | snssd 4812 |
. . . . . 6
β’ (β€
β {1} β β) |
46 | | fss 6734 |
. . . . . 6
β’
(((β Γ {1}):ββΆ{1} β§ {1} β β)
β (β Γ {1}):ββΆβ) |
47 | 43, 45, 46 | sylancr 587 |
. . . . 5
β’ (β€
β (β Γ {1}):ββΆβ) |
48 | 47 | ffvelcdmda 7086 |
. . . 4
β’
((β€ β§ π
β β) β ((β Γ {1})βπ) β β) |
49 | | mulcl 11196 |
. . . . . . 7
β’ ((π₯ β β β§ π¦ β β) β (π₯ Β· π¦) β β) |
50 | 49 | adantl 482 |
. . . . . 6
β’
((β€ β§ (π₯
β β β§ π¦
β β)) β (π₯
Β· π¦) β
β) |
51 | 50, 21, 30, 34, 34, 35 | off 7690 |
. . . . 5
β’ (β€
β ((β Γ {π΄}) βf Β· πΊ):ββΆβ) |
52 | 51 | ffvelcdmda 7086 |
. . . 4
β’
((β€ β§ π
β β) β (((β Γ {π΄}) βf Β· πΊ)βπ) β β) |
53 | 43 | a1i 11 |
. . . . . 6
β’ (β€
β (β Γ {1}):ββΆ{1}) |
54 | 53 | ffnd 6718 |
. . . . 5
β’ (β€
β (β Γ {1}) Fn β) |
55 | 51 | ffnd 6718 |
. . . . 5
β’ (β€
β ((β Γ {π΄}) βf Β· πΊ) Fn β) |
56 | | eqidd 2733 |
. . . . 5
β’
((β€ β§ π
β β) β ((β Γ {1})βπ) = ((β Γ {1})βπ)) |
57 | | eqidd 2733 |
. . . . 5
β’
((β€ β§ π
β β) β (((β Γ {π΄}) βf Β· πΊ)βπ) = (((β Γ {π΄}) βf Β· πΊ)βπ)) |
58 | 54, 55, 34, 34, 35, 56, 57 | ofval 7683 |
. . . 4
β’
((β€ β§ π
β β) β (((β Γ {1}) βf + ((β
Γ {π΄})
βf Β· πΊ))βπ) = (((β Γ {1})βπ) + (((β Γ {π΄}) βf Β·
πΊ)βπ))) |
59 | 1, 2, 7, 8, 41, 48, 52, 58 | climadd 15578 |
. . 3
β’ (β€
β ((β Γ {1}) βf + ((β Γ {π΄}) βf Β·
πΊ)) β (1 +
0)) |
60 | 59 | mptru 1548 |
. 2
β’ ((β
Γ {1}) βf + ((β Γ {π΄}) βf Β· πΊ)) β (1 +
0) |
61 | | 1p0e1 12338 |
. 2
β’ (1 + 0) =
1 |
62 | 60, 61 | breqtri 5173 |
1
β’ ((β
Γ {1}) βf + ((β Γ {π΄}) βf Β· πΊ)) β 1 |