MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem7 Structured version   Visualization version   GIF version

Theorem basellem7 27004
Description: Lemma for basel 27007. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basellem7.2 𝐴 ∈ ℂ
Assertion
Ref Expression
basellem7 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1

Proof of Theorem basellem7
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12843 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12571 . . . 4 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11133 . . . . 5 1 ∈ ℂ
41eqimss2i 4011 . . . . . 6 (ℤ‘1) ⊆ ℕ
5 nnex 12199 . . . . . 6 ℕ ∈ V
64, 5climconst2 15521 . . . . 5 ((1 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {1}) ⇝ 1)
73, 2, 6sylancr 587 . . . 4 (⊤ → (ℕ × {1}) ⇝ 1)
8 ovexd 7425 . . . 4 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ∈ V)
9 basellem7.2 . . . . . . 7 𝐴 ∈ ℂ
104, 5climconst2 15521 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {𝐴}) ⇝ 𝐴)
119, 2, 10sylancr 587 . . . . . 6 (⊤ → (ℕ × {𝐴}) ⇝ 𝐴)
12 ovexd 7425 . . . . . 6 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ∈ V)
13 basel.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
1413basellem6 27003 . . . . . . 7 𝐺 ⇝ 0
1514a1i 11 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
169elexi 3473 . . . . . . . . 9 𝐴 ∈ V
1716fconst 6749 . . . . . . . 8 (ℕ × {𝐴}):ℕ⟶{𝐴}
189a1i 11 . . . . . . . . 9 (⊤ → 𝐴 ∈ ℂ)
1918snssd 4776 . . . . . . . 8 (⊤ → {𝐴} ⊆ ℂ)
20 fss 6707 . . . . . . . 8 (((ℕ × {𝐴}):ℕ⟶{𝐴} ∧ {𝐴} ⊆ ℂ) → (ℕ × {𝐴}):ℕ⟶ℂ)
2117, 19, 20sylancr 587 . . . . . . 7 (⊤ → (ℕ × {𝐴}):ℕ⟶ℂ)
2221ffvelcdmda 7059 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) ∈ ℂ)
23 2nn 12266 . . . . . . . . . . . . 13 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℕ)
25 nnmulcl 12217 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2624, 25sylan 580 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2726peano2nnd 12210 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
2827nnrecred 12244 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2928recnd 11209 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
3029, 13fmptd 7089 . . . . . . 7 (⊤ → 𝐺:ℕ⟶ℂ)
3130ffvelcdmda 7059 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
3221ffnd 6692 . . . . . . 7 (⊤ → (ℕ × {𝐴}) Fn ℕ)
3330ffnd 6692 . . . . . . 7 (⊤ → 𝐺 Fn ℕ)
345a1i 11 . . . . . . 7 (⊤ → ℕ ∈ V)
35 inidm 4193 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
36 eqidd 2731 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) = ((ℕ × {𝐴})‘𝑘))
37 eqidd 2731 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
3832, 33, 34, 34, 35, 36, 37ofval 7667 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴})‘𝑘) · (𝐺𝑘)))
391, 2, 11, 12, 15, 22, 31, 38climmul 15606 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ (𝐴 · 0))
409mul01i 11371 . . . . 5 (𝐴 · 0) = 0
4139, 40breqtrdi 5151 . . . 4 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ 0)
42 1ex 11177 . . . . . . 7 1 ∈ V
4342fconst 6749 . . . . . 6 (ℕ × {1}):ℕ⟶{1}
443a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℂ)
4544snssd 4776 . . . . . 6 (⊤ → {1} ⊆ ℂ)
46 fss 6707 . . . . . 6 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
4743, 45, 46sylancr 587 . . . . 5 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
4847ffvelcdmda 7059 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) ∈ ℂ)
49 mulcl 11159 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
5049adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
5150, 21, 30, 34, 34, 35off 7674 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺):ℕ⟶ℂ)
5251ffvelcdmda 7059 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) ∈ ℂ)
5343a1i 11 . . . . . 6 (⊤ → (ℕ × {1}):ℕ⟶{1})
5453ffnd 6692 . . . . 5 (⊤ → (ℕ × {1}) Fn ℕ)
5551ffnd 6692 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) Fn ℕ)
56 eqidd 2731 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = ((ℕ × {1})‘𝑘))
57 eqidd 2731 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘))
5854, 55, 34, 34, 35, 56, 57ofval 7667 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺))‘𝑘) = (((ℕ × {1})‘𝑘) + (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘)))
591, 2, 7, 8, 41, 48, 52, 58climadd 15605 . . 3 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0))
6059mptru 1547 . 2 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0)
61 1p0e1 12312 . 2 (1 + 0) = 1
6260, 61breqtri 5135 1 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3450  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   / cdiv 11842  cn 12193  2c2 12248  cz 12536  cuz 12800  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462
This theorem is referenced by:  basellem9  27006
  Copyright terms: Public domain W3C validator