MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem7 Structured version   Visualization version   GIF version

Theorem basellem7 25265
Description: Lemma for basel 25268. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basellem7.2 𝐴 ∈ ℂ
Assertion
Ref Expression
basellem7 ((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺)) ⇝ 1

Proof of Theorem basellem7
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12029 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11760 . . . 4 (⊤ → 1 ∈ ℤ)
3 ax-1cn 10330 . . . . 5 1 ∈ ℂ
41eqimss2i 3879 . . . . . 6 (ℤ‘1) ⊆ ℕ
5 nnex 11381 . . . . . 6 ℕ ∈ V
64, 5climconst2 14687 . . . . 5 ((1 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {1}) ⇝ 1)
73, 2, 6sylancr 581 . . . 4 (⊤ → (ℕ × {1}) ⇝ 1)
8 ovexd 6956 . . . 4 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺)) ∈ V)
9 basellem7.2 . . . . . . 7 𝐴 ∈ ℂ
104, 5climconst2 14687 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {𝐴}) ⇝ 𝐴)
119, 2, 10sylancr 581 . . . . . 6 (⊤ → (ℕ × {𝐴}) ⇝ 𝐴)
12 ovexd 6956 . . . . . 6 (⊤ → ((ℕ × {𝐴}) ∘𝑓 · 𝐺) ∈ V)
13 basel.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
1413basellem6 25264 . . . . . . 7 𝐺 ⇝ 0
1514a1i 11 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
169elexi 3415 . . . . . . . . 9 𝐴 ∈ V
1716fconst 6341 . . . . . . . 8 (ℕ × {𝐴}):ℕ⟶{𝐴}
189a1i 11 . . . . . . . . 9 (⊤ → 𝐴 ∈ ℂ)
1918snssd 4571 . . . . . . . 8 (⊤ → {𝐴} ⊆ ℂ)
20 fss 6304 . . . . . . . 8 (((ℕ × {𝐴}):ℕ⟶{𝐴} ∧ {𝐴} ⊆ ℂ) → (ℕ × {𝐴}):ℕ⟶ℂ)
2117, 19, 20sylancr 581 . . . . . . 7 (⊤ → (ℕ × {𝐴}):ℕ⟶ℂ)
2221ffvelrnda 6623 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) ∈ ℂ)
23 2nn 11448 . . . . . . . . . . . . 13 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℕ)
25 nnmulcl 11399 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2624, 25sylan 575 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2726peano2nnd 11393 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
2827nnrecred 11426 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2928recnd 10405 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
3029, 13fmptd 6648 . . . . . . 7 (⊤ → 𝐺:ℕ⟶ℂ)
3130ffvelrnda 6623 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
3221ffnd 6292 . . . . . . 7 (⊤ → (ℕ × {𝐴}) Fn ℕ)
3330ffnd 6292 . . . . . . 7 (⊤ → 𝐺 Fn ℕ)
345a1i 11 . . . . . . 7 (⊤ → ℕ ∈ V)
35 inidm 4043 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
36 eqidd 2779 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) = ((ℕ × {𝐴})‘𝑘))
37 eqidd 2779 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
3832, 33, 34, 34, 35, 36, 37ofval 7183 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘𝑓 · 𝐺)‘𝑘) = (((ℕ × {𝐴})‘𝑘) · (𝐺𝑘)))
391, 2, 11, 12, 15, 22, 31, 38climmul 14771 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘𝑓 · 𝐺) ⇝ (𝐴 · 0))
409mul01i 10566 . . . . 5 (𝐴 · 0) = 0
4139, 40syl6breq 4927 . . . 4 (⊤ → ((ℕ × {𝐴}) ∘𝑓 · 𝐺) ⇝ 0)
42 1ex 10372 . . . . . . 7 1 ∈ V
4342fconst 6341 . . . . . 6 (ℕ × {1}):ℕ⟶{1}
443a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℂ)
4544snssd 4571 . . . . . 6 (⊤ → {1} ⊆ ℂ)
46 fss 6304 . . . . . 6 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
4743, 45, 46sylancr 581 . . . . 5 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
4847ffvelrnda 6623 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) ∈ ℂ)
49 mulcl 10356 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
5049adantl 475 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
5150, 21, 30, 34, 34, 35off 7189 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘𝑓 · 𝐺):ℕ⟶ℂ)
5251ffvelrnda 6623 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘𝑓 · 𝐺)‘𝑘) ∈ ℂ)
5343a1i 11 . . . . . 6 (⊤ → (ℕ × {1}):ℕ⟶{1})
5453ffnd 6292 . . . . 5 (⊤ → (ℕ × {1}) Fn ℕ)
5551ffnd 6292 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘𝑓 · 𝐺) Fn ℕ)
56 eqidd 2779 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = ((ℕ × {1})‘𝑘))
57 eqidd 2779 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘𝑓 · 𝐺)‘𝑘) = (((ℕ × {𝐴}) ∘𝑓 · 𝐺)‘𝑘))
5854, 55, 34, 34, 35, 56, 57ofval 7183 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺))‘𝑘) = (((ℕ × {1})‘𝑘) + (((ℕ × {𝐴}) ∘𝑓 · 𝐺)‘𝑘)))
591, 2, 7, 8, 41, 48, 52, 58climadd 14770 . . 3 (⊤ → ((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺)) ⇝ (1 + 0))
6059mptru 1609 . 2 ((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺)) ⇝ (1 + 0)
61 1p0e1 11506 . 2 (1 + 0) = 1
6260, 61breqtri 4911 1 ((ℕ × {1}) ∘𝑓 + ((ℕ × {𝐴}) ∘𝑓 · 𝐺)) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1601  wtru 1602  wcel 2107  Vcvv 3398  wss 3792  {csn 4398   class class class wbr 4886  cmpt 4965   × cxp 5353  wf 6131  cfv 6135  (class class class)co 6922  𝑓 cof 7172  cc 10270  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   / cdiv 11032  cn 11374  2c2 11430  cz 11728  cuz 11992  cli 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fl 12912  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-rlim 14628
This theorem is referenced by:  basellem9  25267
  Copyright terms: Public domain W3C validator