MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem7 Structured version   Visualization version   GIF version

Theorem basellem7 25824
Description: Lemma for basel 25827. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basellem7.2 𝐴 ∈ ℂ
Assertion
Ref Expression
basellem7 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1

Proof of Theorem basellem7
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12364 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12095 . . . 4 (⊤ → 1 ∈ ℤ)
3 ax-1cn 10674 . . . . 5 1 ∈ ℂ
41eqimss2i 3937 . . . . . 6 (ℤ‘1) ⊆ ℕ
5 nnex 11723 . . . . . 6 ℕ ∈ V
64, 5climconst2 14996 . . . . 5 ((1 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {1}) ⇝ 1)
73, 2, 6sylancr 590 . . . 4 (⊤ → (ℕ × {1}) ⇝ 1)
8 ovexd 7206 . . . 4 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ∈ V)
9 basellem7.2 . . . . . . 7 𝐴 ∈ ℂ
104, 5climconst2 14996 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {𝐴}) ⇝ 𝐴)
119, 2, 10sylancr 590 . . . . . 6 (⊤ → (ℕ × {𝐴}) ⇝ 𝐴)
12 ovexd 7206 . . . . . 6 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ∈ V)
13 basel.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
1413basellem6 25823 . . . . . . 7 𝐺 ⇝ 0
1514a1i 11 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
169elexi 3417 . . . . . . . . 9 𝐴 ∈ V
1716fconst 6565 . . . . . . . 8 (ℕ × {𝐴}):ℕ⟶{𝐴}
189a1i 11 . . . . . . . . 9 (⊤ → 𝐴 ∈ ℂ)
1918snssd 4698 . . . . . . . 8 (⊤ → {𝐴} ⊆ ℂ)
20 fss 6522 . . . . . . . 8 (((ℕ × {𝐴}):ℕ⟶{𝐴} ∧ {𝐴} ⊆ ℂ) → (ℕ × {𝐴}):ℕ⟶ℂ)
2117, 19, 20sylancr 590 . . . . . . 7 (⊤ → (ℕ × {𝐴}):ℕ⟶ℂ)
2221ffvelrnda 6862 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) ∈ ℂ)
23 2nn 11790 . . . . . . . . . . . . 13 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℕ)
25 nnmulcl 11741 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2624, 25sylan 583 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2726peano2nnd 11734 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
2827nnrecred 11768 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2928recnd 10748 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
3029, 13fmptd 6889 . . . . . . 7 (⊤ → 𝐺:ℕ⟶ℂ)
3130ffvelrnda 6862 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
3221ffnd 6506 . . . . . . 7 (⊤ → (ℕ × {𝐴}) Fn ℕ)
3330ffnd 6506 . . . . . . 7 (⊤ → 𝐺 Fn ℕ)
345a1i 11 . . . . . . 7 (⊤ → ℕ ∈ V)
35 inidm 4110 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
36 eqidd 2739 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) = ((ℕ × {𝐴})‘𝑘))
37 eqidd 2739 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
3832, 33, 34, 34, 35, 36, 37ofval 7436 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴})‘𝑘) · (𝐺𝑘)))
391, 2, 11, 12, 15, 22, 31, 38climmul 15081 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ (𝐴 · 0))
409mul01i 10909 . . . . 5 (𝐴 · 0) = 0
4139, 40breqtrdi 5072 . . . 4 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ 0)
42 1ex 10716 . . . . . . 7 1 ∈ V
4342fconst 6565 . . . . . 6 (ℕ × {1}):ℕ⟶{1}
443a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℂ)
4544snssd 4698 . . . . . 6 (⊤ → {1} ⊆ ℂ)
46 fss 6522 . . . . . 6 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
4743, 45, 46sylancr 590 . . . . 5 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
4847ffvelrnda 6862 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) ∈ ℂ)
49 mulcl 10700 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
5049adantl 485 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
5150, 21, 30, 34, 34, 35off 7443 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺):ℕ⟶ℂ)
5251ffvelrnda 6862 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) ∈ ℂ)
5343a1i 11 . . . . . 6 (⊤ → (ℕ × {1}):ℕ⟶{1})
5453ffnd 6506 . . . . 5 (⊤ → (ℕ × {1}) Fn ℕ)
5551ffnd 6506 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) Fn ℕ)
56 eqidd 2739 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = ((ℕ × {1})‘𝑘))
57 eqidd 2739 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘))
5854, 55, 34, 34, 35, 56, 57ofval 7436 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺))‘𝑘) = (((ℕ × {1})‘𝑘) + (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘)))
591, 2, 7, 8, 41, 48, 52, 58climadd 15080 . . 3 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0))
6059mptru 1549 . 2 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0)
61 1p0e1 11841 . 2 (1 + 0) = 1
6260, 61breqtri 5056 1 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wtru 1543  wcel 2113  Vcvv 3398  wss 3844  {csn 4517   class class class wbr 5031  cmpt 5111   × cxp 5524  wf 6336  cfv 6340  (class class class)co 7171  f cof 7424  cc 10614  0cc0 10616  1c1 10617   + caddc 10619   · cmul 10621   / cdiv 11376  cn 11717  2c2 11772  cz 12063  cuz 12325  cli 14932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-of 7426  df-om 7601  df-2nd 7716  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-er 8321  df-pm 8441  df-en 8557  df-dom 8558  df-sdom 8559  df-sup 8980  df-inf 8981  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-div 11377  df-nn 11718  df-2 11780  df-3 11781  df-n0 11978  df-z 12064  df-uz 12326  df-rp 12474  df-fl 13254  df-seq 13462  df-exp 13523  df-cj 14549  df-re 14550  df-im 14551  df-sqrt 14685  df-abs 14686  df-clim 14936  df-rlim 14937
This theorem is referenced by:  basellem9  25826
  Copyright terms: Public domain W3C validator