MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem7 Structured version   Visualization version   GIF version

Theorem basellem7 27025
Description: Lemma for basel 27028. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basellem7.2 𝐴 ∈ ℂ
Assertion
Ref Expression
basellem7 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1

Proof of Theorem basellem7
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12777 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12509 . . . 4 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11071 . . . . 5 1 ∈ ℂ
41eqimss2i 3992 . . . . . 6 (ℤ‘1) ⊆ ℕ
5 nnex 12138 . . . . . 6 ℕ ∈ V
64, 5climconst2 15457 . . . . 5 ((1 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {1}) ⇝ 1)
73, 2, 6sylancr 587 . . . 4 (⊤ → (ℕ × {1}) ⇝ 1)
8 ovexd 7387 . . . 4 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ∈ V)
9 basellem7.2 . . . . . . 7 𝐴 ∈ ℂ
104, 5climconst2 15457 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {𝐴}) ⇝ 𝐴)
119, 2, 10sylancr 587 . . . . . 6 (⊤ → (ℕ × {𝐴}) ⇝ 𝐴)
12 ovexd 7387 . . . . . 6 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ∈ V)
13 basel.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
1413basellem6 27024 . . . . . . 7 𝐺 ⇝ 0
1514a1i 11 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
169elexi 3460 . . . . . . . . 9 𝐴 ∈ V
1716fconst 6714 . . . . . . . 8 (ℕ × {𝐴}):ℕ⟶{𝐴}
189a1i 11 . . . . . . . . 9 (⊤ → 𝐴 ∈ ℂ)
1918snssd 4760 . . . . . . . 8 (⊤ → {𝐴} ⊆ ℂ)
20 fss 6672 . . . . . . . 8 (((ℕ × {𝐴}):ℕ⟶{𝐴} ∧ {𝐴} ⊆ ℂ) → (ℕ × {𝐴}):ℕ⟶ℂ)
2117, 19, 20sylancr 587 . . . . . . 7 (⊤ → (ℕ × {𝐴}):ℕ⟶ℂ)
2221ffvelcdmda 7023 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) ∈ ℂ)
23 2nn 12205 . . . . . . . . . . . . 13 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℕ)
25 nnmulcl 12156 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2624, 25sylan 580 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2726peano2nnd 12149 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
2827nnrecred 12183 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2928recnd 11147 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
3029, 13fmptd 7053 . . . . . . 7 (⊤ → 𝐺:ℕ⟶ℂ)
3130ffvelcdmda 7023 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
3221ffnd 6657 . . . . . . 7 (⊤ → (ℕ × {𝐴}) Fn ℕ)
3330ffnd 6657 . . . . . . 7 (⊤ → 𝐺 Fn ℕ)
345a1i 11 . . . . . . 7 (⊤ → ℕ ∈ V)
35 inidm 4176 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
36 eqidd 2734 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) = ((ℕ × {𝐴})‘𝑘))
37 eqidd 2734 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
3832, 33, 34, 34, 35, 36, 37ofval 7627 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴})‘𝑘) · (𝐺𝑘)))
391, 2, 11, 12, 15, 22, 31, 38climmul 15542 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ (𝐴 · 0))
409mul01i 11310 . . . . 5 (𝐴 · 0) = 0
4139, 40breqtrdi 5134 . . . 4 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ 0)
42 1ex 11115 . . . . . . 7 1 ∈ V
4342fconst 6714 . . . . . 6 (ℕ × {1}):ℕ⟶{1}
443a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℂ)
4544snssd 4760 . . . . . 6 (⊤ → {1} ⊆ ℂ)
46 fss 6672 . . . . . 6 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
4743, 45, 46sylancr 587 . . . . 5 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
4847ffvelcdmda 7023 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) ∈ ℂ)
49 mulcl 11097 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
5049adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
5150, 21, 30, 34, 34, 35off 7634 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺):ℕ⟶ℂ)
5251ffvelcdmda 7023 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) ∈ ℂ)
5343a1i 11 . . . . . 6 (⊤ → (ℕ × {1}):ℕ⟶{1})
5453ffnd 6657 . . . . 5 (⊤ → (ℕ × {1}) Fn ℕ)
5551ffnd 6657 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) Fn ℕ)
56 eqidd 2734 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = ((ℕ × {1})‘𝑘))
57 eqidd 2734 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘))
5854, 55, 34, 34, 35, 56, 57ofval 7627 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺))‘𝑘) = (((ℕ × {1})‘𝑘) + (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘)))
591, 2, 7, 8, 41, 48, 52, 58climadd 15541 . . 3 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0))
6059mptru 1548 . 2 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0)
61 1p0e1 12251 . 2 (1 + 0) = 1
6260, 61breqtri 5118 1 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wtru 1542  wcel 2113  Vcvv 3437  wss 3898  {csn 4575   class class class wbr 5093  cmpt 5174   × cxp 5617  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  cc 11011  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   / cdiv 11781  cn 12132  2c2 12187  cz 12475  cuz 12738  cli 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fl 13698  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398
This theorem is referenced by:  basellem9  27027
  Copyright terms: Public domain W3C validator