MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem7 Structured version   Visualization version   GIF version

Theorem basellem7 27130
Description: Lemma for basel 27133. The function 1 + 𝐴 · 𝐺 for any fixed 𝐴 goes to 1. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
basel.g 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
basellem7.2 𝐴 ∈ ℂ
Assertion
Ref Expression
basellem7 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1

Proof of Theorem basellem7
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12921 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12648 . . . 4 (⊤ → 1 ∈ ℤ)
3 ax-1cn 11213 . . . . 5 1 ∈ ℂ
41eqimss2i 4045 . . . . . 6 (ℤ‘1) ⊆ ℕ
5 nnex 12272 . . . . . 6 ℕ ∈ V
64, 5climconst2 15584 . . . . 5 ((1 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {1}) ⇝ 1)
73, 2, 6sylancr 587 . . . 4 (⊤ → (ℕ × {1}) ⇝ 1)
8 ovexd 7466 . . . 4 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ∈ V)
9 basellem7.2 . . . . . . 7 𝐴 ∈ ℂ
104, 5climconst2 15584 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {𝐴}) ⇝ 𝐴)
119, 2, 10sylancr 587 . . . . . 6 (⊤ → (ℕ × {𝐴}) ⇝ 𝐴)
12 ovexd 7466 . . . . . 6 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ∈ V)
13 basel.g . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
1413basellem6 27129 . . . . . . 7 𝐺 ⇝ 0
1514a1i 11 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
169elexi 3503 . . . . . . . . 9 𝐴 ∈ V
1716fconst 6794 . . . . . . . 8 (ℕ × {𝐴}):ℕ⟶{𝐴}
189a1i 11 . . . . . . . . 9 (⊤ → 𝐴 ∈ ℂ)
1918snssd 4809 . . . . . . . 8 (⊤ → {𝐴} ⊆ ℂ)
20 fss 6752 . . . . . . . 8 (((ℕ × {𝐴}):ℕ⟶{𝐴} ∧ {𝐴} ⊆ ℂ) → (ℕ × {𝐴}):ℕ⟶ℂ)
2117, 19, 20sylancr 587 . . . . . . 7 (⊤ → (ℕ × {𝐴}):ℕ⟶ℂ)
2221ffvelcdmda 7104 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) ∈ ℂ)
23 2nn 12339 . . . . . . . . . . . . 13 2 ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (⊤ → 2 ∈ ℕ)
25 nnmulcl 12290 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2624, 25sylan 580 . . . . . . . . . . 11 ((⊤ ∧ 𝑛 ∈ ℕ) → (2 · 𝑛) ∈ ℕ)
2726peano2nnd 12283 . . . . . . . . . 10 ((⊤ ∧ 𝑛 ∈ ℕ) → ((2 · 𝑛) + 1) ∈ ℕ)
2827nnrecred 12317 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℝ)
2928recnd 11289 . . . . . . . 8 ((⊤ ∧ 𝑛 ∈ ℕ) → (1 / ((2 · 𝑛) + 1)) ∈ ℂ)
3029, 13fmptd 7134 . . . . . . 7 (⊤ → 𝐺:ℕ⟶ℂ)
3130ffvelcdmda 7104 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
3221ffnd 6737 . . . . . . 7 (⊤ → (ℕ × {𝐴}) Fn ℕ)
3330ffnd 6737 . . . . . . 7 (⊤ → 𝐺 Fn ℕ)
345a1i 11 . . . . . . 7 (⊤ → ℕ ∈ V)
35 inidm 4227 . . . . . . 7 (ℕ ∩ ℕ) = ℕ
36 eqidd 2738 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {𝐴})‘𝑘) = ((ℕ × {𝐴})‘𝑘))
37 eqidd 2738 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
3832, 33, 34, 34, 35, 36, 37ofval 7708 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴})‘𝑘) · (𝐺𝑘)))
391, 2, 11, 12, 15, 22, 31, 38climmul 15669 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ (𝐴 · 0))
409mul01i 11451 . . . . 5 (𝐴 · 0) = 0
4139, 40breqtrdi 5184 . . . 4 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) ⇝ 0)
42 1ex 11257 . . . . . . 7 1 ∈ V
4342fconst 6794 . . . . . 6 (ℕ × {1}):ℕ⟶{1}
443a1i 11 . . . . . . 7 (⊤ → 1 ∈ ℂ)
4544snssd 4809 . . . . . 6 (⊤ → {1} ⊆ ℂ)
46 fss 6752 . . . . . 6 (((ℕ × {1}):ℕ⟶{1} ∧ {1} ⊆ ℂ) → (ℕ × {1}):ℕ⟶ℂ)
4743, 45, 46sylancr 587 . . . . 5 (⊤ → (ℕ × {1}):ℕ⟶ℂ)
4847ffvelcdmda 7104 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) ∈ ℂ)
49 mulcl 11239 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
5049adantl 481 . . . . . 6 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
5150, 21, 30, 34, 34, 35off 7715 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺):ℕ⟶ℂ)
5251ffvelcdmda 7104 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) ∈ ℂ)
5343a1i 11 . . . . . 6 (⊤ → (ℕ × {1}):ℕ⟶{1})
5453ffnd 6737 . . . . 5 (⊤ → (ℕ × {1}) Fn ℕ)
5551ffnd 6737 . . . . 5 (⊤ → ((ℕ × {𝐴}) ∘f · 𝐺) Fn ℕ)
56 eqidd 2738 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((ℕ × {1})‘𝑘) = ((ℕ × {1})‘𝑘))
57 eqidd 2738 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘) = (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘))
5854, 55, 34, 34, 35, 56, 57ofval 7708 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺))‘𝑘) = (((ℕ × {1})‘𝑘) + (((ℕ × {𝐴}) ∘f · 𝐺)‘𝑘)))
591, 2, 7, 8, 41, 48, 52, 58climadd 15668 . . 3 (⊤ → ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0))
6059mptru 1547 . 2 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ (1 + 0)
61 1p0e1 12390 . 2 (1 + 0) = 1
6260, 61breqtri 5168 1 ((ℕ × {1}) ∘f + ((ℕ × {𝐴}) ∘f · 𝐺)) ⇝ 1
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2108  Vcvv 3480  wss 3951  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   / cdiv 11920  cn 12266  2c2 12321  cz 12613  cuz 12878  cli 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525
This theorem is referenced by:  basellem9  27132
  Copyright terms: Public domain W3C validator