| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nnuz 12922 | . . . . . 6
⊢ ℕ =
(ℤ≥‘1) | 
| 2 |  | 1zzd 12650 | . . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) | 
| 3 |  | fzfid 14015 | . . . . . 6
⊢ (𝜑 → (0...𝑁) ∈ Fin) | 
| 4 |  | 1zzd 12650 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 1 ∈ ℤ) | 
| 5 |  | plyeq0.3 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) | 
| 6 |  | plyeq0.1 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 7 |  | 0cn 11254 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
ℂ | 
| 8 | 7 | a1i 11 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 0 ∈
ℂ) | 
| 9 | 8 | snssd 4808 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → {0} ⊆
ℂ) | 
| 10 | 6, 9 | unssd 4191 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 11 |  | cnex 11237 | . . . . . . . . . . . . . . . . . . 19
⊢ ℂ
∈ V | 
| 12 |  | ssexg 5322 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | 
| 13 | 10, 11, 12 | sylancl 586 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) | 
| 14 |  | nn0ex 12534 | . . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ∈ V | 
| 15 |  | elmapg 8880 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | 
| 16 | 13, 14, 15 | sylancl 586 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | 
| 17 | 5, 16 | mpbid 232 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) | 
| 18 | 17, 10 | fssd 6752 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 19 |  | elfznn0 13661 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 20 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . 15
⊢ ((𝐴:ℕ0⟶ℂ ∧
𝑘 ∈
ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 21 | 18, 19, 20 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) | 
| 22 | 21 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝐴‘𝑘) ∈ ℂ) | 
| 23 | 22 | abscld 15476 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (abs‘(𝐴‘𝑘)) ∈ ℝ) | 
| 24 | 23 | recnd 11290 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (abs‘(𝐴‘𝑘)) ∈ ℂ) | 
| 25 |  | divcnv 15890 | . . . . . . . . . . 11
⊢
((abs‘(𝐴‘𝑘)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛)) ⇝ 0) | 
| 26 | 24, 25 | syl 17 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛)) ⇝ 0) | 
| 27 |  | nnex 12273 | . . . . . . . . . . . 12
⊢ ℕ
∈ V | 
| 28 | 27 | mptex 7244 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦
((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀)))) ∈ V | 
| 29 | 28 | a1i 11 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀)))) ∈ V) | 
| 30 |  | oveq2 7440 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((abs‘(𝐴‘𝑘)) / 𝑛) = ((abs‘(𝐴‘𝑘)) / 𝑚)) | 
| 31 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦
((abs‘(𝐴‘𝑘)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛)) | 
| 32 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢
((abs‘(𝐴‘𝑘)) / 𝑚) ∈ V | 
| 33 | 30, 31, 32 | fvmpt 7015 | . . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
((abs‘(𝐴‘𝑘)) / 𝑛))‘𝑚) = ((abs‘(𝐴‘𝑘)) / 𝑚)) | 
| 34 | 33 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛))‘𝑚) = ((abs‘(𝐴‘𝑘)) / 𝑚)) | 
| 35 |  | nndivre 12308 | . . . . . . . . . . . 12
⊢
(((abs‘(𝐴‘𝑘)) ∈ ℝ ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴‘𝑘)) / 𝑚) ∈ ℝ) | 
| 36 | 23, 35 | sylan 580 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴‘𝑘)) / 𝑚) ∈ ℝ) | 
| 37 | 34, 36 | eqeltrd 2840 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛))‘𝑚) ∈ ℝ) | 
| 38 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → (𝑛↑(𝑘 − 𝑀)) = (𝑚↑(𝑘 − 𝑀))) | 
| 39 | 38 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))) = ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀)))) | 
| 40 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ ↦
((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀)))) = (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀)))) | 
| 41 |  | ovex 7465 | . . . . . . . . . . . . 13
⊢
((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀))) ∈ V | 
| 42 | 39, 40, 41 | fvmpt 7015 | . . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦
((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀)))) | 
| 43 | 42 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀)))) | 
| 44 | 21 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝐴‘𝑘) ∈ ℂ) | 
| 45 | 44 | abscld 15476 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘(𝐴‘𝑘)) ∈ ℝ) | 
| 46 |  | nnrp 13047 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ+) | 
| 47 | 46 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+) | 
| 48 |  | elfzelz 13565 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ) | 
| 49 |  | cnvimass 6099 | . . . . . . . . . . . . . . . . . . 19
⊢ (◡𝐴 “ (𝑆 ∖ {0})) ⊆ dom 𝐴 | 
| 50 | 49, 17 | fssdm 6754 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ⊆
ℕ0) | 
| 51 |  | plyeq0.6 | . . . . . . . . . . . . . . . . . . 19
⊢ 𝑀 = sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, <
) | 
| 52 |  | nn0ssz 12638 | . . . . . . . . . . . . . . . . . . . . 21
⊢
ℕ0 ⊆ ℤ | 
| 53 | 50, 52 | sstrdi 3995 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ⊆
ℤ) | 
| 54 |  | plyeq0.7 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ≠
∅) | 
| 55 |  | plyeq0.2 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 56 | 55 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 57 | 17 | ffnd 6736 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐴 Fn ℕ0) | 
| 58 |  | elpreima 7077 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐴 Fn ℕ0 →
(𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑧 ∈ ℕ0 ∧ (𝐴‘𝑧) ∈ (𝑆 ∖ {0})))) | 
| 59 | 57, 58 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑧 ∈ ℕ0 ∧ (𝐴‘𝑧) ∈ (𝑆 ∖ {0})))) | 
| 60 | 59 | simplbda 499 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) → (𝐴‘𝑧) ∈ (𝑆 ∖ {0})) | 
| 61 |  | eldifsni 4789 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴‘𝑧) ∈ (𝑆 ∖ {0}) → (𝐴‘𝑧) ≠ 0) | 
| 62 | 60, 61 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) → (𝐴‘𝑧) ≠ 0) | 
| 63 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 = 𝑧 → (𝐴‘𝑘) = (𝐴‘𝑧)) | 
| 64 | 63 | neeq1d 2999 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑧 → ((𝐴‘𝑘) ≠ 0 ↔ (𝐴‘𝑧) ≠ 0)) | 
| 65 |  | breq1 5145 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 𝑧 → (𝑘 ≤ 𝑁 ↔ 𝑧 ≤ 𝑁)) | 
| 66 | 64, 65 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 𝑧 → (((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁) ↔ ((𝐴‘𝑧) ≠ 0 → 𝑧 ≤ 𝑁))) | 
| 67 |  | plyeq0.4 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0}) | 
| 68 |  | plyco0 26232 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴:ℕ0⟶ℂ) →
((𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | 
| 69 | 55, 18, 68 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → ((𝐴 “
(ℤ≥‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁))) | 
| 70 | 67, 69 | mpbid 232 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 71 | 70 | adantr 480 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) → ∀𝑘 ∈ ℕ0
((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 72 | 50 | sselda 3982 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) → 𝑧 ∈ ℕ0) | 
| 73 | 66, 71, 72 | rspcdva 3622 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) → ((𝐴‘𝑧) ≠ 0 → 𝑧 ≤ 𝑁)) | 
| 74 | 62, 73 | mpd 15 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) → 𝑧 ≤ 𝑁) | 
| 75 | 74 | ralrimiva 3145 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑁) | 
| 76 |  | brralrspcev 5202 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℝ ∧
∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑁) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑥) | 
| 77 | 56, 75, 76 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑥) | 
| 78 |  | suprzcl 12700 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((◡𝐴 “ (𝑆 ∖ {0})) ⊆ ℤ ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑥) → sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ∈
(◡𝐴 “ (𝑆 ∖ {0}))) | 
| 79 | 53, 54, 77, 78 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ∈
(◡𝐴 “ (𝑆 ∖ {0}))) | 
| 80 | 51, 79 | eqeltrid 2844 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) | 
| 81 | 50, 80 | sseldd 3983 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 82 | 81 | nn0zd 12641 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 83 |  | zsubcl 12661 | . . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 − 𝑀) ∈ ℤ) | 
| 84 | 48, 82, 83 | syl2anr 597 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 − 𝑀) ∈ ℤ) | 
| 85 | 84 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 − 𝑀) ∈ ℤ) | 
| 86 | 47, 85 | rpexpcld 14287 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘 − 𝑀)) ∈
ℝ+) | 
| 87 | 86 | rpred 13078 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘 − 𝑀)) ∈ ℝ) | 
| 88 | 45, 87 | remulcld 11292 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀))) ∈ ℝ) | 
| 89 | 43, 88 | eqeltrd 2840 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) ∈ ℝ) | 
| 90 |  | nnrecre 12309 | . . . . . . . . . . . . 13
⊢ (𝑚 ∈ ℕ → (1 /
𝑚) ∈
ℝ) | 
| 91 | 90 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈
ℝ) | 
| 92 | 22 | absge0d 15484 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 0 ≤ (abs‘(𝐴‘𝑘))) | 
| 93 | 92 | adantr 480 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤
(abs‘(𝐴‘𝑘))) | 
| 94 |  | nnre 12274 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) | 
| 95 | 94 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ) | 
| 96 |  | nnge1 12295 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → 1 ≤
𝑚) | 
| 97 | 96 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ≤ 𝑚) | 
| 98 |  | 1red 11263 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ∈
ℝ) | 
| 99 | 85 | zred 12724 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 − 𝑀) ∈ ℝ) | 
| 100 |  | simplr 768 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 < 𝑀) | 
| 101 | 48 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ) | 
| 102 | 101 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℤ) | 
| 103 | 82 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℤ) | 
| 104 |  | zltp1le 12669 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 < 𝑀 ↔ (𝑘 + 1) ≤ 𝑀)) | 
| 105 | 102, 103,
104 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 < 𝑀 ↔ (𝑘 + 1) ≤ 𝑀)) | 
| 106 | 100, 105 | mpbid 232 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 + 1) ≤ 𝑀) | 
| 107 | 19 | adantl 481 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 108 | 107 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) | 
| 109 | 108 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℝ) | 
| 110 | 81 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑀 ∈
ℕ0) | 
| 111 | 110 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℝ) | 
| 112 | 111 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℝ) | 
| 113 | 109, 98, 112 | leaddsub2d 11866 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑘 + 1) ≤ 𝑀 ↔ 1 ≤ (𝑀 − 𝑘))) | 
| 114 | 106, 113 | mpbid 232 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ≤ (𝑀 − 𝑘)) | 
| 115 | 108 | recnd 11290 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) | 
| 116 | 115 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℂ) | 
| 117 | 111 | recnd 11290 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℂ) | 
| 118 | 117 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℂ) | 
| 119 | 116, 118 | negsubdi2d 11637 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → -(𝑘 − 𝑀) = (𝑀 − 𝑘)) | 
| 120 | 114, 119 | breqtrrd 5170 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ≤ -(𝑘 − 𝑀)) | 
| 121 | 98, 99, 120 | lenegcon2d 11847 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 − 𝑀) ≤ -1) | 
| 122 |  | neg1z 12655 | . . . . . . . . . . . . . . . 16
⊢ -1 ∈
ℤ | 
| 123 |  | eluz 12893 | . . . . . . . . . . . . . . . 16
⊢ (((𝑘 − 𝑀) ∈ ℤ ∧ -1 ∈ ℤ)
→ (-1 ∈ (ℤ≥‘(𝑘 − 𝑀)) ↔ (𝑘 − 𝑀) ≤ -1)) | 
| 124 | 85, 122, 123 | sylancl 586 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (-1 ∈
(ℤ≥‘(𝑘 − 𝑀)) ↔ (𝑘 − 𝑀) ≤ -1)) | 
| 125 | 121, 124 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → -1 ∈
(ℤ≥‘(𝑘 − 𝑀))) | 
| 126 | 95, 97, 125 | leexp2ad 14294 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘 − 𝑀)) ≤ (𝑚↑-1)) | 
| 127 |  | nncn 12275 | . . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) | 
| 128 | 127 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) | 
| 129 |  | expn1 14113 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℂ → (𝑚↑-1) = (1 / 𝑚)) | 
| 130 | 128, 129 | syl 17 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑-1) = (1 / 𝑚)) | 
| 131 | 126, 130 | breqtrd 5168 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘 − 𝑀)) ≤ (1 / 𝑚)) | 
| 132 | 87, 91, 45, 93, 131 | lemul2ad 12209 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀))) ≤ ((abs‘(𝐴‘𝑘)) · (1 / 𝑚))) | 
| 133 | 24 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘(𝐴‘𝑘)) ∈ ℂ) | 
| 134 |  | nnne0 12301 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → 𝑚 ≠ 0) | 
| 135 | 134 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) | 
| 136 | 133, 128,
135 | divrecd 12047 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴‘𝑘)) / 𝑚) = ((abs‘(𝐴‘𝑘)) · (1 / 𝑚))) | 
| 137 | 34, 136 | eqtrd 2776 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛))‘𝑚) = ((abs‘(𝐴‘𝑘)) · (1 / 𝑚))) | 
| 138 | 132, 43, 137 | 3brtr4d 5174 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) / 𝑛))‘𝑚)) | 
| 139 | 86 | rpge0d 13082 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝑚↑(𝑘 − 𝑀))) | 
| 140 | 45, 87, 93, 139 | mulge0d 11841 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤
((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀)))) | 
| 141 | 140, 43 | breqtrrd 5170 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦
((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))))‘𝑚)) | 
| 142 | 1, 4, 26, 29, 37, 89, 138, 141 | climsqz2 15679 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀)))) ⇝ 0) | 
| 143 | 27 | mptex 7244 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ∈ V | 
| 144 | 143 | a1i 11 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ∈ V) | 
| 145 | 38 | oveq2d 7448 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))) = ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀)))) | 
| 146 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) = (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) | 
| 147 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀))) ∈ V | 
| 148 | 145, 146,
147 | fvmpt 7015 | . . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀)))) | 
| 149 | 148 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀)))) | 
| 150 | 18 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴:ℕ0⟶ℂ) | 
| 151 | 150, 19, 20 | syl2an 596 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ ℂ) | 
| 152 | 127 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑚 ∈ ℂ) | 
| 153 | 134 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑚 ≠ 0) | 
| 154 | 82 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℤ) | 
| 155 | 48, 154, 83 | syl2anr 597 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 − 𝑀) ∈ ℤ) | 
| 156 | 152, 153,
155 | expclzd 14192 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑(𝑘 − 𝑀)) ∈ ℂ) | 
| 157 | 151, 156 | mulcld 11282 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀))) ∈ ℂ) | 
| 158 | 149, 157 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) ∈ ℂ) | 
| 159 | 158 | an32s 652 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) ∈ ℂ) | 
| 160 | 159 | adantlr 715 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) ∈ ℂ) | 
| 161 | 87 | recnd 11290 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘 − 𝑀)) ∈ ℂ) | 
| 162 | 44, 161 | absmuld 15494 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀)))) = ((abs‘(𝐴‘𝑘)) · (abs‘(𝑚↑(𝑘 − 𝑀))))) | 
| 163 | 87, 139 | absidd 15462 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘(𝑚↑(𝑘 − 𝑀))) = (𝑚↑(𝑘 − 𝑀))) | 
| 164 | 163 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴‘𝑘)) · (abs‘(𝑚↑(𝑘 − 𝑀)))) = ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀)))) | 
| 165 | 162, 164 | eqtrd 2776 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀)))) = ((abs‘(𝐴‘𝑘)) · (𝑚↑(𝑘 − 𝑀)))) | 
| 166 | 148 | adantl 481 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀)))) | 
| 167 | 166 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚)) = (abs‘((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀))))) | 
| 168 | 165, 167,
43 | 3eqtr4rd 2787 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = (abs‘((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚))) | 
| 169 | 1, 4, 144, 29, 160, 168 | climabs0 15622 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘(𝐴‘𝑘)) · (𝑛↑(𝑘 − 𝑀)))) ⇝ 0)) | 
| 170 | 142, 169 | mpbird 257 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ⇝ 0) | 
| 171 | 108 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℝ) | 
| 172 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 𝑘 < 𝑀) | 
| 173 | 171, 172 | ltned 11398 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 𝑘 ≠ 𝑀) | 
| 174 |  | velsn 4641 | . . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀) | 
| 175 | 174 | necon3bbii 2987 | . . . . . . . . . 10
⊢ (¬
𝑘 ∈ {𝑀} ↔ 𝑘 ≠ 𝑀) | 
| 176 | 173, 175 | sylibr 234 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → ¬ 𝑘 ∈ {𝑀}) | 
| 177 | 176 | iffalsed 4535 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) = 0) | 
| 178 | 170, 177 | breqtrrd 5170 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ⇝ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 179 |  | nncn 12275 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) | 
| 180 | 179 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → 𝑛 ∈ ℂ) | 
| 181 |  | nnne0 12301 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | 
| 182 | 181 | ad2antlr 727 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → 𝑛 ≠ 0) | 
| 183 | 84 | ad3antrrr 730 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → (𝑘 − 𝑀) ∈ ℤ) | 
| 184 | 180, 182,
183 | expclzd 14192 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → (𝑛↑(𝑘 − 𝑀)) ∈ ℂ) | 
| 185 | 184 | mul02d 11460 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → (0 · (𝑛↑(𝑘 − 𝑀))) = 0) | 
| 186 |  | simpr 484 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → (𝐴‘𝑘) = 0) | 
| 187 | 186 | oveq1d 7447 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))) = (0 · (𝑛↑(𝑘 − 𝑀)))) | 
| 188 | 186 | ifeq1d 4544 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) = if(𝑘 ∈ {𝑀}, 0, 0)) | 
| 189 |  | ifid 4565 | . . . . . . . . . . . . 13
⊢ if(𝑘 ∈ {𝑀}, 0, 0) = 0 | 
| 190 | 188, 189 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) = 0) | 
| 191 | 185, 187,
190 | 3eqtr4d 2786 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) = 0) → ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))) = if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 192 | 21 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) → (𝐴‘𝑘) ∈ ℂ) | 
| 193 | 192 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝐴‘𝑘) ∈ ℂ) | 
| 194 | 193 | mulridd 11279 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → ((𝐴‘𝑘) · 1) = (𝐴‘𝑘)) | 
| 195 |  | nn0ssre 12532 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℕ0 ⊆ ℝ | 
| 196 | 50, 195 | sstrdi 3995 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (◡𝐴 “ (𝑆 ∖ {0})) ⊆
ℝ) | 
| 197 | 196 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → (◡𝐴 “ (𝑆 ∖ {0})) ⊆
ℝ) | 
| 198 | 54 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → (◡𝐴 “ (𝑆 ∖ {0})) ≠
∅) | 
| 199 | 77 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑥) | 
| 200 | 19 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ∈ ℕ0) | 
| 201 |  | ffvelcdm 7100 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) | 
| 202 | 17, 19, 201 | syl2an 596 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝐴‘𝑘) ∈ (𝑆 ∪ {0})) | 
| 203 | 202 | anim1i 615 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐴‘𝑘) ≠ 0)) | 
| 204 |  | eldifsn 4785 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴‘𝑘) ∈ ((𝑆 ∪ {0}) ∖ {0}) ↔ ((𝐴‘𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐴‘𝑘) ≠ 0)) | 
| 205 | 203, 204 | sylibr 234 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → (𝐴‘𝑘) ∈ ((𝑆 ∪ {0}) ∖ {0})) | 
| 206 |  | difun2 4480 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆 ∪ {0}) ∖ {0}) =
(𝑆 ∖
{0}) | 
| 207 | 205, 206 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → (𝐴‘𝑘) ∈ (𝑆 ∖ {0})) | 
| 208 |  | elpreima 7077 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 Fn ℕ0 →
(𝑘 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ∈ (𝑆 ∖ {0})))) | 
| 209 | 57, 208 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑘 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ∈ (𝑆 ∖ {0})))) | 
| 210 | 209 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → (𝑘 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ∈ (𝑆 ∖ {0})))) | 
| 211 | 200, 207,
210 | mpbir2and 713 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ∈ (◡𝐴 “ (𝑆 ∖ {0}))) | 
| 212 | 197, 198,
199, 211 | suprubd 12231 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, <
)) | 
| 213 | 212, 51 | breqtrrdi 5184 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑀) | 
| 214 | 213 | ad4ant14 752 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑀) | 
| 215 |  | simpllr 775 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑀 ≤ 𝑘) | 
| 216 | 108 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ∈ ℝ) | 
| 217 | 111 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑀 ∈ ℝ) | 
| 218 | 216, 217 | letri3d 11404 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑘 = 𝑀 ↔ (𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘))) | 
| 219 | 214, 215,
218 | mpbir2and 713 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 = 𝑀) | 
| 220 | 219 | oveq1d 7447 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑘 − 𝑀) = (𝑀 − 𝑀)) | 
| 221 | 117 | ad3antrrr 730 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑀 ∈ ℂ) | 
| 222 | 221 | subidd 11609 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑀 − 𝑀) = 0) | 
| 223 | 220, 222 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑘 − 𝑀) = 0) | 
| 224 | 223 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑛↑(𝑘 − 𝑀)) = (𝑛↑0)) | 
| 225 | 179 | ad2antlr 727 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑛 ∈ ℂ) | 
| 226 | 225 | exp0d 14181 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑛↑0) = 1) | 
| 227 | 224, 226 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → (𝑛↑(𝑘 − 𝑀)) = 1) | 
| 228 | 227 | oveq2d 7448 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))) = ((𝐴‘𝑘) · 1)) | 
| 229 | 219, 174 | sylibr 234 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ∈ {𝑀}) | 
| 230 | 229 | iftrued 4532 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) = (𝐴‘𝑘)) | 
| 231 | 194, 228,
230 | 3eqtr4d 2786 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴‘𝑘) ≠ 0) → ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))) = if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 232 | 191, 231 | pm2.61dane 3028 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))) = if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 233 | 232 | mpteq2dva 5241 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) = (𝑛 ∈ ℕ ↦ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0))) | 
| 234 |  | fconstmpt 5746 | . . . . . . . . 9
⊢ (ℕ
× {if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)}) = (𝑛 ∈ ℕ ↦ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 235 | 233, 234 | eqtr4di 2794 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) = (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)})) | 
| 236 |  | ifcl 4570 | . . . . . . . . . 10
⊢ (((𝐴‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ)
→ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) ∈ ℂ) | 
| 237 | 192, 7, 236 | sylancl 586 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) → if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) ∈ ℂ) | 
| 238 |  | 1z 12649 | . . . . . . . . 9
⊢ 1 ∈
ℤ | 
| 239 | 1 | eqimss2i 4044 | . . . . . . . . . 10
⊢
(ℤ≥‘1) ⊆ ℕ | 
| 240 | 239, 27 | climconst2 15585 | . . . . . . . . 9
⊢
((if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) ∈ ℂ ∧ 1 ∈ ℤ)
→ (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)}) ⇝ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 241 | 237, 238,
240 | sylancl 586 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) → (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)}) ⇝ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 242 | 235, 241 | eqbrtrd 5164 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑀 ≤ 𝑘) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ⇝ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 243 | 178, 242,
108, 111 | ltlecasei 11370 | . . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → (𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀)))) ⇝ if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 244 |  | snex 5435 | . . . . . . . 8
⊢ {0}
∈ V | 
| 245 | 27, 244 | xpex 7774 | . . . . . . 7
⊢ (ℕ
× {0}) ∈ V | 
| 246 | 245 | a1i 11 | . . . . . 6
⊢ (𝜑 → (ℕ × {0})
∈ V) | 
| 247 | 159 | anasss 466 | . . . . . 6
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ ℕ)) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) ∈ ℂ) | 
| 248 |  | plyeq0.5 | . . . . . . . . . . . 12
⊢ (𝜑 → 0𝑝 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 249 | 248 | fveq1d 6907 | . . . . . . . . . . 11
⊢ (𝜑 →
(0𝑝‘𝑚) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑚)) | 
| 250 | 249 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(0𝑝‘𝑚) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑚)) | 
| 251 | 127 | adantl 481 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ) | 
| 252 |  | 0pval 25707 | . . . . . . . . . . 11
⊢ (𝑚 ∈ ℂ →
(0𝑝‘𝑚) = 0) | 
| 253 | 251, 252 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(0𝑝‘𝑚) = 0) | 
| 254 |  | oveq1 7439 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑚 → (𝑧↑𝑘) = (𝑚↑𝑘)) | 
| 255 | 254 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑚 → ((𝐴‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑚↑𝑘))) | 
| 256 | 255 | sumeq2sdv 15740 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑚 → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘))) | 
| 257 |  | eqid 2736 | . . . . . . . . . . . 12
⊢ (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 258 |  | sumex 15725 | . . . . . . . . . . . 12
⊢
Σ𝑘 ∈
(0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘)) ∈ V | 
| 259 | 256, 257,
258 | fvmpt 7015 | . . . . . . . . . . 11
⊢ (𝑚 ∈ ℂ → ((𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑚) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘))) | 
| 260 | 251, 259 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))‘𝑚) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘))) | 
| 261 | 250, 253,
260 | 3eqtr3d 2784 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 0 = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘))) | 
| 262 | 261 | oveq1d 7447 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (0 / (𝑚↑𝑀)) = (Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀))) | 
| 263 |  | expcl 14121 | . . . . . . . . . 10
⊢ ((𝑚 ∈ ℂ ∧ 𝑀 ∈ ℕ0)
→ (𝑚↑𝑀) ∈
ℂ) | 
| 264 | 127, 81, 263 | syl2anr 597 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚↑𝑀) ∈ ℂ) | 
| 265 | 134 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0) | 
| 266 | 251, 265,
154 | expne0d 14193 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚↑𝑀) ≠ 0) | 
| 267 | 264, 266 | div0d 12043 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (0 / (𝑚↑𝑀)) = 0) | 
| 268 |  | fzfid 14015 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (0...𝑁) ∈ Fin) | 
| 269 |  | expcl 14121 | . . . . . . . . . . 11
⊢ ((𝑚 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑚↑𝑘) ∈
ℂ) | 
| 270 | 251, 19, 269 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑𝑘) ∈ ℂ) | 
| 271 | 151, 270 | mulcld 11282 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑚↑𝑘)) ∈ ℂ) | 
| 272 | 268, 264,
271, 266 | fsumdivc 15823 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀)) = Σ𝑘 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀))) | 
| 273 | 262, 267,
272 | 3eqtr3d 2784 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 0 = Σ𝑘 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀))) | 
| 274 |  | fvconst2g 7223 | . . . . . . . 8
⊢ ((0
∈ ℂ ∧ 𝑚
∈ ℕ) → ((ℕ × {0})‘𝑚) = 0) | 
| 275 | 8, 274 | sylan 580 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((ℕ ×
{0})‘𝑚) =
0) | 
| 276 | 154 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℤ) | 
| 277 | 48 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ) | 
| 278 | 152, 153,
276, 277 | expsubd 14198 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑(𝑘 − 𝑀)) = ((𝑚↑𝑘) / (𝑚↑𝑀))) | 
| 279 | 278 | oveq2d 7448 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑚↑(𝑘 − 𝑀))) = ((𝐴‘𝑘) · ((𝑚↑𝑘) / (𝑚↑𝑀)))) | 
| 280 | 264 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑𝑀) ∈ ℂ) | 
| 281 | 266 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑𝑀) ≠ 0) | 
| 282 | 151, 270,
280, 281 | divassd 12079 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀)) = ((𝐴‘𝑘) · ((𝑚↑𝑘) / (𝑚↑𝑀)))) | 
| 283 | 279, 149,
282 | 3eqtr4d 2786 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = (((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀))) | 
| 284 | 283 | sumeq2dv 15739 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑁)((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚) = Σ𝑘 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑚↑𝑘)) / (𝑚↑𝑀))) | 
| 285 | 273, 275,
284 | 3eqtr4d 2786 | . . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((ℕ ×
{0})‘𝑚) =
Σ𝑘 ∈ (0...𝑁)((𝑛 ∈ ℕ ↦ ((𝐴‘𝑘) · (𝑛↑(𝑘 − 𝑀))))‘𝑚)) | 
| 286 | 1, 2, 3, 243, 246, 247, 285 | climfsum 15857 | . . . . 5
⊢ (𝜑 → (ℕ × {0})
⇝ Σ𝑘 ∈
(0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 287 |  | suprleub 12235 | . . . . . . . . . . . 12
⊢ ((((◡𝐴 “ (𝑆 ∖ {0})) ⊆ ℝ ∧ (◡𝐴 “ (𝑆 ∖ {0})) ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑥) ∧ 𝑁 ∈ ℝ) → (sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ≤ 𝑁 ↔ ∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑁)) | 
| 288 | 196, 54, 77, 56, 287 | syl31anc 1374 | . . . . . . . . . . 11
⊢ (𝜑 → (sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ≤ 𝑁 ↔ ∀𝑧 ∈ (◡𝐴 “ (𝑆 ∖ {0}))𝑧 ≤ 𝑁)) | 
| 289 | 75, 288 | mpbird 257 | . . . . . . . . . 10
⊢ (𝜑 → sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ≤ 𝑁) | 
| 290 | 51, 289 | eqbrtrid 5177 | . . . . . . . . 9
⊢ (𝜑 → 𝑀 ≤ 𝑁) | 
| 291 |  | nn0uz 12921 | . . . . . . . . . . 11
⊢
ℕ0 = (ℤ≥‘0) | 
| 292 | 81, 291 | eleqtrdi 2850 | . . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) | 
| 293 | 55 | nn0zd 12641 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 294 |  | elfz5 13557 | . . . . . . . . . 10
⊢ ((𝑀 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ≤ 𝑁)) | 
| 295 | 292, 293,
294 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → (𝑀 ∈ (0...𝑁) ↔ 𝑀 ≤ 𝑁)) | 
| 296 | 290, 295 | mpbird 257 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | 
| 297 | 296 | snssd 4808 | . . . . . . 7
⊢ (𝜑 → {𝑀} ⊆ (0...𝑁)) | 
| 298 | 18, 81 | ffvelcdmd 7104 | . . . . . . . . 9
⊢ (𝜑 → (𝐴‘𝑀) ∈ ℂ) | 
| 299 |  | elsni 4642 | . . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | 
| 300 | 299 | fveq2d 6909 | . . . . . . . . . 10
⊢ (𝑘 ∈ {𝑀} → (𝐴‘𝑘) = (𝐴‘𝑀)) | 
| 301 | 300 | eleq1d 2825 | . . . . . . . . 9
⊢ (𝑘 ∈ {𝑀} → ((𝐴‘𝑘) ∈ ℂ ↔ (𝐴‘𝑀) ∈ ℂ)) | 
| 302 | 298, 301 | syl5ibrcom 247 | . . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ {𝑀} → (𝐴‘𝑘) ∈ ℂ)) | 
| 303 | 302 | ralrimiv 3144 | . . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ {𝑀} (𝐴‘𝑘) ∈ ℂ) | 
| 304 | 3 | olcd 874 | . . . . . . 7
⊢ (𝜑 → ((0...𝑁) ⊆ (ℤ≥‘0)
∨ (0...𝑁) ∈
Fin)) | 
| 305 |  | sumss2 15763 | . . . . . . 7
⊢ ((({𝑀} ⊆ (0...𝑁) ∧ ∀𝑘 ∈ {𝑀} (𝐴‘𝑘) ∈ ℂ) ∧ ((0...𝑁) ⊆
(ℤ≥‘0) ∨ (0...𝑁) ∈ Fin)) → Σ𝑘 ∈ {𝑀} (𝐴‘𝑘) = Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 306 | 297, 303,
304, 305 | syl21anc 837 | . . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ {𝑀} (𝐴‘𝑘) = Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0)) | 
| 307 |  | ltso 11342 | . . . . . . . . 9
⊢  < Or
ℝ | 
| 308 | 307 | supex 9504 | . . . . . . . 8
⊢
sup((◡𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ∈
V | 
| 309 | 51, 308 | eqeltri 2836 | . . . . . . 7
⊢ 𝑀 ∈ V | 
| 310 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑘 = 𝑀 → (𝐴‘𝑘) = (𝐴‘𝑀)) | 
| 311 | 310 | sumsn 15783 | . . . . . . 7
⊢ ((𝑀 ∈ V ∧ (𝐴‘𝑀) ∈ ℂ) → Σ𝑘 ∈ {𝑀} (𝐴‘𝑘) = (𝐴‘𝑀)) | 
| 312 | 309, 298,
311 | sylancr 587 | . . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ {𝑀} (𝐴‘𝑘) = (𝐴‘𝑀)) | 
| 313 | 306, 312 | eqtr3d 2778 | . . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴‘𝑘), 0) = (𝐴‘𝑀)) | 
| 314 | 286, 313 | breqtrd 5168 | . . . 4
⊢ (𝜑 → (ℕ × {0})
⇝ (𝐴‘𝑀)) | 
| 315 | 239, 27 | climconst2 15585 | . . . . 5
⊢ ((0
∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0}) ⇝
0) | 
| 316 | 7, 238, 315 | mp2an 692 | . . . 4
⊢ (ℕ
× {0}) ⇝ 0 | 
| 317 |  | climuni 15589 | . . . 4
⊢
(((ℕ × {0}) ⇝ (𝐴‘𝑀) ∧ (ℕ × {0}) ⇝ 0)
→ (𝐴‘𝑀) = 0) | 
| 318 | 314, 316,
317 | sylancl 586 | . . 3
⊢ (𝜑 → (𝐴‘𝑀) = 0) | 
| 319 |  | fvex 6918 | . . . 4
⊢ (𝐴‘𝑀) ∈ V | 
| 320 | 319 | elsn 4640 | . . 3
⊢ ((𝐴‘𝑀) ∈ {0} ↔ (𝐴‘𝑀) = 0) | 
| 321 | 318, 320 | sylibr 234 | . 2
⊢ (𝜑 → (𝐴‘𝑀) ∈ {0}) | 
| 322 |  | elpreima 7077 | . . . . . 6
⊢ (𝐴 Fn ℕ0 →
(𝑀 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (𝑆 ∖ {0})))) | 
| 323 | 57, 322 | syl 17 | . . . . 5
⊢ (𝜑 → (𝑀 ∈ (◡𝐴 “ (𝑆 ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (𝑆 ∖ {0})))) | 
| 324 | 80, 323 | mpbid 232 | . . . 4
⊢ (𝜑 → (𝑀 ∈ ℕ0 ∧ (𝐴‘𝑀) ∈ (𝑆 ∖ {0}))) | 
| 325 | 324 | simprd 495 | . . 3
⊢ (𝜑 → (𝐴‘𝑀) ∈ (𝑆 ∖ {0})) | 
| 326 | 325 | eldifbd 3963 | . 2
⊢ (𝜑 → ¬ (𝐴‘𝑀) ∈ {0}) | 
| 327 | 321, 326 | pm2.65i 194 | 1
⊢  ¬
𝜑 |