MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0lem Structured version   Visualization version   GIF version

Theorem plyeq0lem 25276
Description: Lemma for plyeq0 25277. If 𝐴 is the coefficient function for a nonzero polynomial such that 𝑃(𝑧) = Σ𝑘 ∈ ℕ0𝐴(𝑘) · 𝑧𝑘 = 0 for every 𝑧 ∈ ℂ and 𝐴(𝑀) is the nonzero leading coefficient, then the function 𝐹(𝑧) = 𝑃(𝑧) / 𝑧𝑀 is a sum of powers of 1 / 𝑧, and so the limit of this function as 𝑧 ⇝ +∞ is the constant term, 𝐴(𝑀). But 𝐹(𝑧) = 0 everywhere, so this limit is also equal to zero so that 𝐴(𝑀) = 0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1 (𝜑𝑆 ⊆ ℂ)
plyeq0.2 (𝜑𝑁 ∈ ℕ0)
plyeq0.3 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
plyeq0.4 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
plyeq0.5 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
plyeq0.6 𝑀 = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
plyeq0.7 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
Assertion
Ref Expression
plyeq0lem ¬ 𝜑
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝑀   𝑘,𝑁,𝑧   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧
Allowed substitution hint:   𝑀(𝑧)

Proof of Theorem plyeq0lem
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12281 . . . . . 6 (𝜑 → 1 ∈ ℤ)
3 fzfid 13621 . . . . . 6 (𝜑 → (0...𝑁) ∈ Fin)
4 1zzd 12281 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 1 ∈ ℤ)
5 plyeq0.3 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
6 plyeq0.1 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑆 ⊆ ℂ)
7 0cn 10898 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℂ
87a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 0 ∈ ℂ)
98snssd 4739 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → {0} ⊆ ℂ)
106, 9unssd 4116 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 10883 . . . . . . . . . . . . . . . . . . 19 ℂ ∈ V
12 ssexg 5242 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 585 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12169 . . . . . . . . . . . . . . . . . 18 0 ∈ V
15 elmapg 8586 . . . . . . . . . . . . . . . . . 18 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 585 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 231 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 6602 . . . . . . . . . . . . . . 15 (𝜑𝐴:ℕ0⟶ℂ)
19 elfznn0 13278 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
20 ffvelrn 6941 . . . . . . . . . . . . . . 15 ((𝐴:ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
2118, 19, 20syl2an 595 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
2221adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝐴𝑘) ∈ ℂ)
2322abscld 15076 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (abs‘(𝐴𝑘)) ∈ ℝ)
2423recnd 10934 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (abs‘(𝐴𝑘)) ∈ ℂ)
25 divcnv 15493 . . . . . . . . . . 11 ((abs‘(𝐴𝑘)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛)) ⇝ 0)
2624, 25syl 17 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛)) ⇝ 0)
27 nnex 11909 . . . . . . . . . . . 12 ℕ ∈ V
2827mptex 7081 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀)))) ∈ V
2928a1i 11 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀)))) ∈ V)
30 oveq2 7263 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((abs‘(𝐴𝑘)) / 𝑛) = ((abs‘(𝐴𝑘)) / 𝑚))
31 eqid 2738 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛))
32 ovex 7288 . . . . . . . . . . . . 13 ((abs‘(𝐴𝑘)) / 𝑚) ∈ V
3330, 31, 32fvmpt 6857 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛))‘𝑚) = ((abs‘(𝐴𝑘)) / 𝑚))
3433adantl 481 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛))‘𝑚) = ((abs‘(𝐴𝑘)) / 𝑚))
35 nndivre 11944 . . . . . . . . . . . 12 (((abs‘(𝐴𝑘)) ∈ ℝ ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴𝑘)) / 𝑚) ∈ ℝ)
3623, 35sylan 579 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴𝑘)) / 𝑚) ∈ ℝ)
3734, 36eqeltrd 2839 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛))‘𝑚) ∈ ℝ)
38 oveq1 7262 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝑛↑(𝑘𝑀)) = (𝑚↑(𝑘𝑀)))
3938oveq2d 7271 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))) = ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))))
40 eqid 2738 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀)))) = (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))
41 ovex 7288 . . . . . . . . . . . . 13 ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))) ∈ V
4239, 40, 41fvmpt 6857 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))‘𝑚) = ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))))
4342adantl 481 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))‘𝑚) = ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))))
4421ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
4544abscld 15076 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘(𝐴𝑘)) ∈ ℝ)
46 nnrp 12670 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ+)
4746adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ+)
48 elfzelz 13185 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
49 cnvimass 5978 . . . . . . . . . . . . . . . . . . 19 (𝐴 “ (𝑆 ∖ {0})) ⊆ dom 𝐴
5049, 17fssdm 6604 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) ⊆ ℕ0)
51 plyeq0.6 . . . . . . . . . . . . . . . . . . 19 𝑀 = sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < )
52 nn0ssz 12271 . . . . . . . . . . . . . . . . . . . . 21 0 ⊆ ℤ
5350, 52sstrdi 3929 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) ⊆ ℤ)
54 plyeq0.7 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
55 plyeq0.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 ∈ ℕ0)
5655nn0red 12224 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ ℝ)
5717ffnd 6585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐴 Fn ℕ0)
58 elpreima 6917 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 Fn ℕ0 → (𝑧 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑧 ∈ ℕ0 ∧ (𝐴𝑧) ∈ (𝑆 ∖ {0}))))
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑧 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑧 ∈ ℕ0 ∧ (𝐴𝑧) ∈ (𝑆 ∖ {0}))))
6059simplbda 499 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))) → (𝐴𝑧) ∈ (𝑆 ∖ {0}))
61 eldifsni 4720 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑧) ∈ (𝑆 ∖ {0}) → (𝐴𝑧) ≠ 0)
6260, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))) → (𝐴𝑧) ≠ 0)
63 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑘 = 𝑧 → (𝐴𝑘) = (𝐴𝑧))
6463neeq1d 3002 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑧 → ((𝐴𝑘) ≠ 0 ↔ (𝐴𝑧) ≠ 0))
65 breq1 5073 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 = 𝑧 → (𝑘𝑁𝑧𝑁))
6664, 65imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑧 → (((𝐴𝑘) ≠ 0 → 𝑘𝑁) ↔ ((𝐴𝑧) ≠ 0 → 𝑧𝑁)))
67 plyeq0.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 “ (ℤ‘(𝑁 + 1))) = {0})
68 plyco0 25258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ0𝐴:ℕ0⟶ℂ) → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
6955, 18, 68syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝐴 “ (ℤ‘(𝑁 + 1))) = {0} ↔ ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁)))
7067, 69mpbid 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
7170adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))) → ∀𝑘 ∈ ℕ0 ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
7250sselda 3917 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))) → 𝑧 ∈ ℕ0)
7366, 71, 72rspcdva 3554 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))) → ((𝐴𝑧) ≠ 0 → 𝑧𝑁))
7462, 73mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))) → 𝑧𝑁)
7574ralrimiva 3107 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑁)
76 brralrspcev 5130 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℝ ∧ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑁) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑥)
7756, 75, 76syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑥)
78 suprzcl 12330 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 “ (𝑆 ∖ {0})) ⊆ ℤ ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑥) → sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ∈ (𝐴 “ (𝑆 ∖ {0})))
7953, 54, 77, 78syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 (𝜑 → sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ∈ (𝐴 “ (𝑆 ∖ {0})))
8051, 79eqeltrid 2843 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (𝐴 “ (𝑆 ∖ {0})))
8150, 80sseldd 3918 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ0)
8281nn0zd 12353 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℤ)
83 zsubcl 12292 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘𝑀) ∈ ℤ)
8448, 82, 83syl2anr 596 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑘𝑀) ∈ ℤ)
8584ad2antrr 722 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘𝑀) ∈ ℤ)
8647, 85rpexpcld 13890 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘𝑀)) ∈ ℝ+)
8786rpred 12701 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘𝑀)) ∈ ℝ)
8845, 87remulcld 10936 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))) ∈ ℝ)
8943, 88eqeltrd 2839 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))‘𝑚) ∈ ℝ)
90 nnrecre 11945 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → (1 / 𝑚) ∈ ℝ)
9190adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (1 / 𝑚) ∈ ℝ)
9222absge0d 15084 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 0 ≤ (abs‘(𝐴𝑘)))
9392adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤ (abs‘(𝐴𝑘)))
94 nnre 11910 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
9594adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
96 nnge1 11931 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 1 ≤ 𝑚)
9796adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ≤ 𝑚)
98 1red 10907 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ∈ ℝ)
9985zred 12355 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘𝑀) ∈ ℝ)
100 simplr 765 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 < 𝑀)
10148adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
102101ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℤ)
10382ad3antrrr 726 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℤ)
104 zltp1le 12300 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 < 𝑀 ↔ (𝑘 + 1) ≤ 𝑀))
105102, 103, 104syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 < 𝑀 ↔ (𝑘 + 1) ≤ 𝑀))
106100, 105mpbid 231 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘 + 1) ≤ 𝑀)
10719adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
108107nn0red 12224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ)
109108ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℝ)
11081adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℕ0)
111110nn0red 12224 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℝ)
112111ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℝ)
113109, 98, 112leaddsub2d 11507 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑘 + 1) ≤ 𝑀 ↔ 1 ≤ (𝑀𝑘)))
114106, 113mpbid 231 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ≤ (𝑀𝑘))
115108recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
116115ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑘 ∈ ℂ)
117111recnd 10934 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℂ)
118117ad2antrr 722 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑀 ∈ ℂ)
119116, 118negsubdi2d 11278 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → -(𝑘𝑀) = (𝑀𝑘))
120114, 119breqtrrd 5098 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 1 ≤ -(𝑘𝑀))
12198, 99, 120lenegcon2d 11488 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑘𝑀) ≤ -1)
122 neg1z 12286 . . . . . . . . . . . . . . . 16 -1 ∈ ℤ
123 eluz 12525 . . . . . . . . . . . . . . . 16 (((𝑘𝑀) ∈ ℤ ∧ -1 ∈ ℤ) → (-1 ∈ (ℤ‘(𝑘𝑀)) ↔ (𝑘𝑀) ≤ -1))
12485, 122, 123sylancl 585 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (-1 ∈ (ℤ‘(𝑘𝑀)) ↔ (𝑘𝑀) ≤ -1))
125121, 124mpbird 256 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → -1 ∈ (ℤ‘(𝑘𝑀)))
12695, 97, 125leexp2ad 13899 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘𝑀)) ≤ (𝑚↑-1))
127 nncn 11911 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
128127adantl 481 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
129 expn1 13720 . . . . . . . . . . . . . 14 (𝑚 ∈ ℂ → (𝑚↑-1) = (1 / 𝑚))
130128, 129syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑-1) = (1 / 𝑚))
131126, 130breqtrd 5096 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘𝑀)) ≤ (1 / 𝑚))
13287, 91, 45, 93, 131lemul2ad 11845 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))) ≤ ((abs‘(𝐴𝑘)) · (1 / 𝑚)))
13324adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘(𝐴𝑘)) ∈ ℂ)
134 nnne0 11937 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → 𝑚 ≠ 0)
135134adantl 481 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 𝑚 ≠ 0)
136133, 128, 135divrecd 11684 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴𝑘)) / 𝑚) = ((abs‘(𝐴𝑘)) · (1 / 𝑚)))
13734, 136eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛))‘𝑚) = ((abs‘(𝐴𝑘)) · (1 / 𝑚)))
138132, 43, 1373brtr4d 5102 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) / 𝑛))‘𝑚))
13986rpge0d 12705 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤ (𝑚↑(𝑘𝑀)))
14045, 87, 93, 139mulge0d 11482 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤ ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))))
141140, 43breqtrrd 5098 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))‘𝑚))
1421, 4, 26, 29, 37, 89, 138, 141climsqz2 15279 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀)))) ⇝ 0)
14327mptex 7081 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ∈ V
144143a1i 11 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ∈ V)
14538oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝐴𝑘) · (𝑛↑(𝑘𝑀))) = ((𝐴𝑘) · (𝑚↑(𝑘𝑀))))
146 eqid 2738 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) = (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))
147 ovex 7288 . . . . . . . . . . . . . . 15 ((𝐴𝑘) · (𝑚↑(𝑘𝑀))) ∈ V
148145, 146, 147fvmpt 6857 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) = ((𝐴𝑘) · (𝑚↑(𝑘𝑀))))
149148ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) = ((𝐴𝑘) · (𝑚↑(𝑘𝑀))))
15018adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝐴:ℕ0⟶ℂ)
151150, 19, 20syl2an 595 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ ℂ)
152127ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑚 ∈ ℂ)
153134ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑚 ≠ 0)
15482adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → 𝑀 ∈ ℤ)
15548, 154, 83syl2anr 596 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘𝑀) ∈ ℤ)
156152, 153, 155expclzd 13797 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑(𝑘𝑀)) ∈ ℂ)
157151, 156mulcld 10926 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑚↑(𝑘𝑀))) ∈ ℂ)
158149, 157eqeltrd 2839 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) ∈ ℂ)
159158an32s 648 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) ∈ ℂ)
160159adantlr 711 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) ∈ ℂ)
16187recnd 10934 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (𝑚↑(𝑘𝑀)) ∈ ℂ)
16244, 161absmuld 15094 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘((𝐴𝑘) · (𝑚↑(𝑘𝑀)))) = ((abs‘(𝐴𝑘)) · (abs‘(𝑚↑(𝑘𝑀)))))
16387, 139absidd 15062 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘(𝑚↑(𝑘𝑀))) = (𝑚↑(𝑘𝑀)))
164163oveq2d 7271 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((abs‘(𝐴𝑘)) · (abs‘(𝑚↑(𝑘𝑀)))) = ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))))
165162, 164eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘((𝐴𝑘) · (𝑚↑(𝑘𝑀)))) = ((abs‘(𝐴𝑘)) · (𝑚↑(𝑘𝑀))))
166148adantl 481 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) = ((𝐴𝑘) · (𝑚↑(𝑘𝑀))))
167166fveq2d 6760 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚)) = (abs‘((𝐴𝑘) · (𝑚↑(𝑘𝑀)))))
168165, 167, 433eqtr4rd 2789 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀))))‘𝑚) = (abs‘((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚)))
1691, 4, 144, 29, 160, 168climabs0 15222 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘(𝐴𝑘)) · (𝑛↑(𝑘𝑀)))) ⇝ 0))
170142, 169mpbird 256 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ⇝ 0)
171108adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 𝑘 ∈ ℝ)
172 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 𝑘 < 𝑀)
173171, 172ltned 11041 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → 𝑘𝑀)
174 velsn 4574 . . . . . . . . . . 11 (𝑘 ∈ {𝑀} ↔ 𝑘 = 𝑀)
175174necon3bbii 2990 . . . . . . . . . 10 𝑘 ∈ {𝑀} ↔ 𝑘𝑀)
176173, 175sylibr 233 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → ¬ 𝑘 ∈ {𝑀})
177176iffalsed 4467 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) = 0)
178170, 177breqtrrd 5098 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑘 < 𝑀) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ⇝ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
179 nncn 11911 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
180179ad2antlr 723 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → 𝑛 ∈ ℂ)
181 nnne0 11937 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
182181ad2antlr 723 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → 𝑛 ≠ 0)
18384ad3antrrr 726 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → (𝑘𝑀) ∈ ℤ)
184180, 182, 183expclzd 13797 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → (𝑛↑(𝑘𝑀)) ∈ ℂ)
185184mul02d 11103 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → (0 · (𝑛↑(𝑘𝑀))) = 0)
186 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → (𝐴𝑘) = 0)
187186oveq1d 7270 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → ((𝐴𝑘) · (𝑛↑(𝑘𝑀))) = (0 · (𝑛↑(𝑘𝑀))))
188186ifeq1d 4475 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) = if(𝑘 ∈ {𝑀}, 0, 0))
189 ifid 4496 . . . . . . . . . . . . 13 if(𝑘 ∈ {𝑀}, 0, 0) = 0
190188, 189eqtrdi 2795 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) = 0)
191185, 187, 1903eqtr4d 2788 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) = 0) → ((𝐴𝑘) · (𝑛↑(𝑘𝑀))) = if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
19221adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) → (𝐴𝑘) ∈ ℂ)
193192ad2antrr 722 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝐴𝑘) ∈ ℂ)
194193mulid1d 10923 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → ((𝐴𝑘) · 1) = (𝐴𝑘))
195 nn0ssre 12167 . . . . . . . . . . . . . . . . . . . . . . 23 0 ⊆ ℝ
19650, 195sstrdi 3929 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 “ (𝑆 ∖ {0})) ⊆ ℝ)
197196ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → (𝐴 “ (𝑆 ∖ {0})) ⊆ ℝ)
19854ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → (𝐴 “ (𝑆 ∖ {0})) ≠ ∅)
19977ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑥)
20019ad2antlr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → 𝑘 ∈ ℕ0)
201 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
20217, 19, 201syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (0...𝑁)) → (𝐴𝑘) ∈ (𝑆 ∪ {0}))
203202anim1i 614 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐴𝑘) ≠ 0))
204 eldifsn 4717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴𝑘) ∈ ((𝑆 ∪ {0}) ∖ {0}) ↔ ((𝐴𝑘) ∈ (𝑆 ∪ {0}) ∧ (𝐴𝑘) ≠ 0))
205203, 204sylibr 233 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → (𝐴𝑘) ∈ ((𝑆 ∪ {0}) ∖ {0}))
206 difun2 4411 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆 ∪ {0}) ∖ {0}) = (𝑆 ∖ {0})
207205, 206eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → (𝐴𝑘) ∈ (𝑆 ∖ {0}))
208 elpreima 6917 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 Fn ℕ0 → (𝑘 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ (𝑆 ∖ {0}))))
20957, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑘 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ (𝑆 ∖ {0}))))
210209ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → (𝑘 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ (𝑆 ∖ {0}))))
211200, 207, 210mpbir2and 709 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → 𝑘 ∈ (𝐴 “ (𝑆 ∖ {0})))
212197, 198, 199, 211suprubd 11867 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → 𝑘 ≤ sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ))
213212, 51breqtrrdi 5112 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ (0...𝑁)) ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
214213ad4ant14 748 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑀)
215 simpllr 772 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑀𝑘)
216108ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑘 ∈ ℝ)
217111ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑀 ∈ ℝ)
218216, 217letri3d 11047 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑘 = 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
219214, 215, 218mpbir2and 709 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑘 = 𝑀)
220219oveq1d 7270 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑘𝑀) = (𝑀𝑀))
221117ad3antrrr 726 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑀 ∈ ℂ)
222221subidd 11250 . . . . . . . . . . . . . . . 16 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑀𝑀) = 0)
223220, 222eqtrd 2778 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑘𝑀) = 0)
224223oveq2d 7271 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑛↑(𝑘𝑀)) = (𝑛↑0))
225179ad2antlr 723 . . . . . . . . . . . . . . 15 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑛 ∈ ℂ)
226225exp0d 13786 . . . . . . . . . . . . . 14 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑛↑0) = 1)
227224, 226eqtrd 2778 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → (𝑛↑(𝑘𝑀)) = 1)
228227oveq2d 7271 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → ((𝐴𝑘) · (𝑛↑(𝑘𝑀))) = ((𝐴𝑘) · 1))
229219, 174sylibr 233 . . . . . . . . . . . . 13 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → 𝑘 ∈ {𝑀})
230229iftrued 4464 . . . . . . . . . . . 12 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) = (𝐴𝑘))
231194, 228, 2303eqtr4d 2788 . . . . . . . . . . 11 (((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) ∧ (𝐴𝑘) ≠ 0) → ((𝐴𝑘) · (𝑛↑(𝑘𝑀))) = if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
232191, 231pm2.61dane 3031 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) ∧ 𝑛 ∈ ℕ) → ((𝐴𝑘) · (𝑛↑(𝑘𝑀))) = if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
233232mpteq2dva 5170 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) = (𝑛 ∈ ℕ ↦ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0)))
234 fconstmpt 5640 . . . . . . . . 9 (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0)}) = (𝑛 ∈ ℕ ↦ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
235233, 234eqtr4di 2797 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) = (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0)}))
236 ifcl 4501 . . . . . . . . . 10 (((𝐴𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) ∈ ℂ)
237192, 7, 236sylancl 585 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) → if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) ∈ ℂ)
238 1z 12280 . . . . . . . . 9 1 ∈ ℤ
2391eqimss2i 3976 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
240239, 27climconst2 15185 . . . . . . . . 9 ((if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0)}) ⇝ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
241237, 238, 240sylancl 585 . . . . . . . 8 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) → (ℕ × {if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0)}) ⇝ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
242235, 241eqbrtrd 5092 . . . . . . 7 (((𝜑𝑘 ∈ (0...𝑁)) ∧ 𝑀𝑘) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ⇝ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
243178, 242, 108, 111ltlecasei 11013 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀)))) ⇝ if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
244 snex 5349 . . . . . . . 8 {0} ∈ V
24527, 244xpex 7581 . . . . . . 7 (ℕ × {0}) ∈ V
246245a1i 11 . . . . . 6 (𝜑 → (ℕ × {0}) ∈ V)
247159anasss 466 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ ℕ)) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) ∈ ℂ)
248 plyeq0.5 . . . . . . . . . . . 12 (𝜑 → 0𝑝 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
249248fveq1d 6758 . . . . . . . . . . 11 (𝜑 → (0𝑝𝑚) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))‘𝑚))
250249adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (0𝑝𝑚) = ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))‘𝑚))
251127adantl 481 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
252 0pval 24740 . . . . . . . . . . 11 (𝑚 ∈ ℂ → (0𝑝𝑚) = 0)
253251, 252syl 17 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → (0𝑝𝑚) = 0)
254 oveq1 7262 . . . . . . . . . . . . . 14 (𝑧 = 𝑚 → (𝑧𝑘) = (𝑚𝑘))
255254oveq2d 7271 . . . . . . . . . . . . 13 (𝑧 = 𝑚 → ((𝐴𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑚𝑘)))
256255sumeq2sdv 15344 . . . . . . . . . . . 12 (𝑧 = 𝑚 → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)))
257 eqid 2738 . . . . . . . . . . . 12 (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
258 sumex 15327 . . . . . . . . . . . 12 Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)) ∈ V
259256, 257, 258fvmpt 6857 . . . . . . . . . . 11 (𝑚 ∈ ℂ → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))‘𝑚) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)))
260251, 259syl 17 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))‘𝑚) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)))
261250, 253, 2603eqtr3d 2786 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 0 = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)))
262261oveq1d 7270 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (0 / (𝑚𝑀)) = (Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)))
263 expcl 13728 . . . . . . . . . 10 ((𝑚 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑚𝑀) ∈ ℂ)
264127, 81, 263syl2anr 596 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑚𝑀) ∈ ℂ)
265134adantl 481 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → 𝑚 ≠ 0)
266251, 265, 154expne0d 13798 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑚𝑀) ≠ 0)
267264, 266div0d 11680 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (0 / (𝑚𝑀)) = 0)
268 fzfid 13621 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (0...𝑁) ∈ Fin)
269 expcl 13728 . . . . . . . . . . 11 ((𝑚 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑚𝑘) ∈ ℂ)
270251, 19, 269syl2an 595 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚𝑘) ∈ ℂ)
271151, 270mulcld 10926 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑚𝑘)) ∈ ℂ)
272268, 264, 271, 266fsumdivc 15426 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)) = Σ𝑘 ∈ (0...𝑁)(((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)))
273262, 267, 2723eqtr3d 2786 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → 0 = Σ𝑘 ∈ (0...𝑁)(((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)))
274 fvconst2g 7059 . . . . . . . 8 ((0 ∈ ℂ ∧ 𝑚 ∈ ℕ) → ((ℕ × {0})‘𝑚) = 0)
2758, 274sylan 579 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ((ℕ × {0})‘𝑚) = 0)
276154adantr 480 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑀 ∈ ℤ)
27748adantl 481 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
278152, 153, 276, 277expsubd 13803 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚↑(𝑘𝑀)) = ((𝑚𝑘) / (𝑚𝑀)))
279278oveq2d 7271 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑚↑(𝑘𝑀))) = ((𝐴𝑘) · ((𝑚𝑘) / (𝑚𝑀))))
280264adantr 480 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚𝑀) ∈ ℂ)
281266adantr 480 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑚𝑀) ≠ 0)
282151, 270, 280, 281divassd 11716 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → (((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)) = ((𝐴𝑘) · ((𝑚𝑘) / (𝑚𝑀))))
283279, 149, 2823eqtr4d 2788 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) = (((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)))
284283sumeq2dv 15343 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → Σ𝑘 ∈ (0...𝑁)((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚) = Σ𝑘 ∈ (0...𝑁)(((𝐴𝑘) · (𝑚𝑘)) / (𝑚𝑀)))
285273, 275, 2843eqtr4d 2788 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → ((ℕ × {0})‘𝑚) = Σ𝑘 ∈ (0...𝑁)((𝑛 ∈ ℕ ↦ ((𝐴𝑘) · (𝑛↑(𝑘𝑀))))‘𝑚))
2861, 2, 3, 243, 246, 247, 285climfsum 15460 . . . . 5 (𝜑 → (ℕ × {0}) ⇝ Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
287 suprleub 11871 . . . . . . . . . . . 12 ((((𝐴 “ (𝑆 ∖ {0})) ⊆ ℝ ∧ (𝐴 “ (𝑆 ∖ {0})) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑥) ∧ 𝑁 ∈ ℝ) → (sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ≤ 𝑁 ↔ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑁))
288196, 54, 77, 56, 287syl31anc 1371 . . . . . . . . . . 11 (𝜑 → (sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ≤ 𝑁 ↔ ∀𝑧 ∈ (𝐴 “ (𝑆 ∖ {0}))𝑧𝑁))
28975, 288mpbird 256 . . . . . . . . . 10 (𝜑 → sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ≤ 𝑁)
29051, 289eqbrtrid 5105 . . . . . . . . 9 (𝜑𝑀𝑁)
291 nn0uz 12549 . . . . . . . . . . 11 0 = (ℤ‘0)
29281, 291eleqtrdi 2849 . . . . . . . . . 10 (𝜑𝑀 ∈ (ℤ‘0))
29355nn0zd 12353 . . . . . . . . . 10 (𝜑𝑁 ∈ ℤ)
294 elfz5 13177 . . . . . . . . . 10 ((𝑀 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (0...𝑁) ↔ 𝑀𝑁))
295292, 293, 294syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (0...𝑁) ↔ 𝑀𝑁))
296290, 295mpbird 256 . . . . . . . 8 (𝜑𝑀 ∈ (0...𝑁))
297296snssd 4739 . . . . . . 7 (𝜑 → {𝑀} ⊆ (0...𝑁))
29818, 81ffvelrnd 6944 . . . . . . . . 9 (𝜑 → (𝐴𝑀) ∈ ℂ)
299 elsni 4575 . . . . . . . . . . 11 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
300299fveq2d 6760 . . . . . . . . . 10 (𝑘 ∈ {𝑀} → (𝐴𝑘) = (𝐴𝑀))
301300eleq1d 2823 . . . . . . . . 9 (𝑘 ∈ {𝑀} → ((𝐴𝑘) ∈ ℂ ↔ (𝐴𝑀) ∈ ℂ))
302298, 301syl5ibrcom 246 . . . . . . . 8 (𝜑 → (𝑘 ∈ {𝑀} → (𝐴𝑘) ∈ ℂ))
303302ralrimiv 3106 . . . . . . 7 (𝜑 → ∀𝑘 ∈ {𝑀} (𝐴𝑘) ∈ ℂ)
3043olcd 870 . . . . . . 7 (𝜑 → ((0...𝑁) ⊆ (ℤ‘0) ∨ (0...𝑁) ∈ Fin))
305 sumss2 15366 . . . . . . 7 ((({𝑀} ⊆ (0...𝑁) ∧ ∀𝑘 ∈ {𝑀} (𝐴𝑘) ∈ ℂ) ∧ ((0...𝑁) ⊆ (ℤ‘0) ∨ (0...𝑁) ∈ Fin)) → Σ𝑘 ∈ {𝑀} (𝐴𝑘) = Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
306297, 303, 304, 305syl21anc 834 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑀} (𝐴𝑘) = Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0))
307 ltso 10986 . . . . . . . . 9 < Or ℝ
308307supex 9152 . . . . . . . 8 sup((𝐴 “ (𝑆 ∖ {0})), ℝ, < ) ∈ V
30951, 308eqeltri 2835 . . . . . . 7 𝑀 ∈ V
310 fveq2 6756 . . . . . . . 8 (𝑘 = 𝑀 → (𝐴𝑘) = (𝐴𝑀))
311310sumsn 15386 . . . . . . 7 ((𝑀 ∈ V ∧ (𝐴𝑀) ∈ ℂ) → Σ𝑘 ∈ {𝑀} (𝐴𝑘) = (𝐴𝑀))
312309, 298, 311sylancr 586 . . . . . 6 (𝜑 → Σ𝑘 ∈ {𝑀} (𝐴𝑘) = (𝐴𝑀))
313306, 312eqtr3d 2780 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...𝑁)if(𝑘 ∈ {𝑀}, (𝐴𝑘), 0) = (𝐴𝑀))
314286, 313breqtrd 5096 . . . 4 (𝜑 → (ℕ × {0}) ⇝ (𝐴𝑀))
315239, 27climconst2 15185 . . . . 5 ((0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0}) ⇝ 0)
3167, 238, 315mp2an 688 . . . 4 (ℕ × {0}) ⇝ 0
317 climuni 15189 . . . 4 (((ℕ × {0}) ⇝ (𝐴𝑀) ∧ (ℕ × {0}) ⇝ 0) → (𝐴𝑀) = 0)
318314, 316, 317sylancl 585 . . 3 (𝜑 → (𝐴𝑀) = 0)
319 fvex 6769 . . . 4 (𝐴𝑀) ∈ V
320319elsn 4573 . . 3 ((𝐴𝑀) ∈ {0} ↔ (𝐴𝑀) = 0)
321318, 320sylibr 233 . 2 (𝜑 → (𝐴𝑀) ∈ {0})
322 elpreima 6917 . . . . . 6 (𝐴 Fn ℕ0 → (𝑀 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (𝑆 ∖ {0}))))
32357, 322syl 17 . . . . 5 (𝜑 → (𝑀 ∈ (𝐴 “ (𝑆 ∖ {0})) ↔ (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (𝑆 ∖ {0}))))
32480, 323mpbid 231 . . . 4 (𝜑 → (𝑀 ∈ ℕ0 ∧ (𝐴𝑀) ∈ (𝑆 ∖ {0})))
325324simprd 495 . . 3 (𝜑 → (𝐴𝑀) ∈ (𝑆 ∖ {0}))
326325eldifbd 3896 . 2 (𝜑 → ¬ (𝐴𝑀) ∈ {0})
327321, 326pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  supcsup 9129  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  cuz 12511  +crp 12659  ...cfz 13168  cexp 13710  abscabs 14873  cli 15121  Σcsu 15325  0𝑝c0p 24738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739
This theorem is referenced by:  plyeq0  25277
  Copyright terms: Public domain W3C validator