Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv3 | Structured version Visualization version GIF version |
Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
cycpmfv3.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
cycpmfv3.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) |
Ref | Expression |
---|---|
cycpmfv3 | ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
5 | 1, 2, 3, 4 | tocycfv 30902 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
6 | 5 | fveq1d 6660 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋)) |
7 | f1oi 6639 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) | |
8 | f1ofn 6603 | . . . 4 ⊢ (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) | |
9 | 7, 8 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
10 | 1zzd 12052 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
11 | cshwf 14209 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) | |
12 | 3, 10, 11 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) |
13 | 12 | ffnd 6499 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
14 | df-f1 6340 | . . . . . . . 8 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
15 | 4, 14 | sylib 221 | . . . . . . 7 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
16 | 15 | simprd 499 | . . . . . 6 ⊢ (𝜑 → Fun ◡𝑊) |
17 | 16 | funfnd 6366 | . . . . 5 ⊢ (𝜑 → ◡𝑊 Fn dom ◡𝑊) |
18 | df-rn 5535 | . . . . . 6 ⊢ ran 𝑊 = dom ◡𝑊 | |
19 | 18 | fneq2i 6432 | . . . . 5 ⊢ (◡𝑊 Fn ran 𝑊 ↔ ◡𝑊 Fn dom ◡𝑊) |
20 | 17, 19 | sylibr 237 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
21 | dfdm4 5735 | . . . . . 6 ⊢ dom 𝑊 = ran ◡𝑊 | |
22 | 21 | eqimss2i 3951 | . . . . 5 ⊢ ran ◡𝑊 ⊆ dom 𝑊 |
23 | wrdfn 13927 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
24 | 3, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
25 | 24 | fndmd 6438 | . . . . 5 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
26 | 22, 25 | sseqtrid 3944 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
27 | fnco 6448 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
28 | 13, 20, 26, 27 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
29 | incom 4106 | . . . . 5 ⊢ (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) | |
30 | disjdif 4368 | . . . . 5 ⊢ (ran 𝑊 ∩ (𝐷 ∖ ran 𝑊)) = ∅ | |
31 | 29, 30 | eqtr3i 2783 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ |
32 | 31 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
33 | cycpmfv3.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
34 | cycpmfv3.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) | |
35 | 33, 34 | eldifd 3869 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ ran 𝑊)) |
36 | fvun1 6743 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ 𝑋 ∈ (𝐷 ∖ ran 𝑊))) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) | |
37 | 9, 28, 32, 35, 36 | syl112anc 1371 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) |
38 | fvresi 6926 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ ran 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) | |
39 | 35, 38 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) |
40 | 6, 37, 39 | 3eqtrd 2797 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∖ cdif 3855 ∪ cun 3856 ∩ cin 3857 ⊆ wss 3858 ∅c0 4225 I cid 5429 ◡ccnv 5523 dom cdm 5524 ran crn 5525 ↾ cres 5526 ∘ ccom 5528 Fun wfun 6329 Fn wfn 6330 ⟶wf 6331 –1-1→wf1 6332 –1-1-onto→wf1o 6334 ‘cfv 6335 (class class class)co 7150 0cc0 10575 1c1 10576 ℤcz 12020 ..^cfzo 13082 ♯chash 13740 Word cword 13913 cyclShift ccsh 14197 toCycctocyc 30899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-fz 12940 df-fzo 13083 df-fl 13211 df-mod 13287 df-hash 13741 df-word 13914 df-concat 13970 df-substr 14050 df-pfx 14080 df-csh 14198 df-tocyc 30900 |
This theorem is referenced by: cycpmco2 30926 cyc2fvx 30927 cyc3co2 30933 |
Copyright terms: Public domain | W3C validator |