Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv3 | Structured version Visualization version GIF version |
Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
cycpmfv3.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
cycpmfv3.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) |
Ref | Expression |
---|---|
cycpmfv3 | ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
5 | 1, 2, 3, 4 | tocycfv 31278 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
6 | 5 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋)) |
7 | f1oi 6737 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) | |
8 | f1ofn 6701 | . . . 4 ⊢ (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) | |
9 | 7, 8 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
10 | 1zzd 12281 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
11 | cshwf 14441 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) | |
12 | 3, 10, 11 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) |
13 | 12 | ffnd 6585 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
14 | df-f1 6423 | . . . . . . . 8 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
15 | 4, 14 | sylib 217 | . . . . . . 7 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
16 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → Fun ◡𝑊) |
17 | 16 | funfnd 6449 | . . . . 5 ⊢ (𝜑 → ◡𝑊 Fn dom ◡𝑊) |
18 | df-rn 5591 | . . . . . 6 ⊢ ran 𝑊 = dom ◡𝑊 | |
19 | 18 | fneq2i 6515 | . . . . 5 ⊢ (◡𝑊 Fn ran 𝑊 ↔ ◡𝑊 Fn dom ◡𝑊) |
20 | 17, 19 | sylibr 233 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
21 | dfdm4 5793 | . . . . . 6 ⊢ dom 𝑊 = ran ◡𝑊 | |
22 | 21 | eqimss2i 3976 | . . . . 5 ⊢ ran ◡𝑊 ⊆ dom 𝑊 |
23 | wrdfn 14159 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
24 | 3, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
25 | 24 | fndmd 6522 | . . . . 5 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
26 | 22, 25 | sseqtrid 3969 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
27 | fnco 6533 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
28 | 13, 20, 26, 27 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
29 | disjdifr 4403 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ | |
30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
31 | cycpmfv3.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
32 | cycpmfv3.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) | |
33 | 31, 32 | eldifd 3894 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ ran 𝑊)) |
34 | fvun1 6841 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ 𝑋 ∈ (𝐷 ∖ ran 𝑊))) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) | |
35 | 9, 28, 30, 33, 34 | syl112anc 1372 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) |
36 | fvresi 7027 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ ran 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) | |
37 | 33, 36 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) |
38 | 6, 35, 37 | 3eqtrd 2782 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 I cid 5479 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Fun wfun 6412 Fn wfn 6413 ⟶wf 6414 –1-1→wf1 6415 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 ℤcz 12249 ..^cfzo 13311 ♯chash 13972 Word cword 14145 cyclShift ccsh 14429 toCycctocyc 31275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-hash 13973 df-word 14146 df-concat 14202 df-substr 14282 df-pfx 14312 df-csh 14430 df-tocyc 31276 |
This theorem is referenced by: cycpmco2 31302 cyc2fvx 31303 cyc3co2 31309 |
Copyright terms: Public domain | W3C validator |