| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv3 | Structured version Visualization version GIF version | ||
| Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv3.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| cycpmfv3.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) |
| Ref | Expression |
|---|---|
| cycpmfv3 | ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | 1, 2, 3, 4 | tocycfv 33085 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 6 | 5 | fveq1d 6830 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋)) |
| 7 | f1oi 6806 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) | |
| 8 | f1ofn 6769 | . . . 4 ⊢ (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
| 10 | 1zzd 12509 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 11 | cshwf 14709 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) | |
| 12 | 3, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) |
| 13 | 12 | ffnd 6657 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
| 14 | df-f1 6491 | . . . . . . . 8 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 15 | 4, 14 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 16 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → Fun ◡𝑊) |
| 17 | 16 | funfnd 6517 | . . . . 5 ⊢ (𝜑 → ◡𝑊 Fn dom ◡𝑊) |
| 18 | df-rn 5630 | . . . . . 6 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 19 | 18 | fneq2i 6584 | . . . . 5 ⊢ (◡𝑊 Fn ran 𝑊 ↔ ◡𝑊 Fn dom ◡𝑊) |
| 20 | 17, 19 | sylibr 234 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
| 21 | dfdm4 5839 | . . . . . 6 ⊢ dom 𝑊 = ran ◡𝑊 | |
| 22 | 21 | eqimss2i 3992 | . . . . 5 ⊢ ran ◡𝑊 ⊆ dom 𝑊 |
| 23 | wrdfn 14437 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 24 | 3, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 25 | 24 | fndmd 6591 | . . . . 5 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 26 | 22, 25 | sseqtrid 3973 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
| 27 | fnco 6604 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
| 28 | 13, 20, 26, 27 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
| 29 | disjdifr 4422 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ | |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
| 31 | cycpmfv3.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 32 | cycpmfv3.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) | |
| 33 | 31, 32 | eldifd 3909 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ ran 𝑊)) |
| 34 | fvun1 6919 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ 𝑋 ∈ (𝐷 ∖ ran 𝑊))) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) | |
| 35 | 9, 28, 30, 33, 34 | syl112anc 1376 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) |
| 36 | fvresi 7113 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ ran 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) | |
| 37 | 33, 36 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) |
| 38 | 6, 35, 37 | 3eqtrd 2772 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 I cid 5513 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 ℤcz 12475 ..^cfzo 13556 ♯chash 14239 Word cword 14422 cyclShift ccsh 14697 toCycctocyc 33082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-hash 14240 df-word 14423 df-concat 14480 df-substr 14551 df-pfx 14581 df-csh 14698 df-tocyc 33083 |
| This theorem is referenced by: cycpmco2 33109 cyc2fvx 33110 cyc3co2 33116 |
| Copyright terms: Public domain | W3C validator |