| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv3 | Structured version Visualization version GIF version | ||
| Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv3.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| cycpmfv3.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) |
| Ref | Expression |
|---|---|
| cycpmfv3 | ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | 1, 2, 3, 4 | tocycfv 33073 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 6 | 5 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋)) |
| 7 | f1oi 6801 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) | |
| 8 | f1ofn 6764 | . . . 4 ⊢ (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
| 10 | 1zzd 12500 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 11 | cshwf 14704 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) | |
| 12 | 3, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) |
| 13 | 12 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
| 14 | df-f1 6486 | . . . . . . . 8 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 15 | 4, 14 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 16 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → Fun ◡𝑊) |
| 17 | 16 | funfnd 6512 | . . . . 5 ⊢ (𝜑 → ◡𝑊 Fn dom ◡𝑊) |
| 18 | df-rn 5627 | . . . . . 6 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 19 | 18 | fneq2i 6579 | . . . . 5 ⊢ (◡𝑊 Fn ran 𝑊 ↔ ◡𝑊 Fn dom ◡𝑊) |
| 20 | 17, 19 | sylibr 234 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
| 21 | dfdm4 5835 | . . . . . 6 ⊢ dom 𝑊 = ran ◡𝑊 | |
| 22 | 21 | eqimss2i 3996 | . . . . 5 ⊢ ran ◡𝑊 ⊆ dom 𝑊 |
| 23 | wrdfn 14432 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 24 | 3, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 25 | 24 | fndmd 6586 | . . . . 5 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 26 | 22, 25 | sseqtrid 3977 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
| 27 | fnco 6599 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
| 28 | 13, 20, 26, 27 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
| 29 | disjdifr 4423 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ | |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
| 31 | cycpmfv3.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 32 | cycpmfv3.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) | |
| 33 | 31, 32 | eldifd 3913 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ ran 𝑊)) |
| 34 | fvun1 6913 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ 𝑋 ∈ (𝐷 ∖ ran 𝑊))) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) | |
| 35 | 9, 28, 30, 33, 34 | syl112anc 1376 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) |
| 36 | fvresi 7107 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ ran 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) | |
| 37 | 33, 36 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) |
| 38 | 6, 35, 37 | 3eqtrd 2770 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 I cid 5510 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 ∘ ccom 5620 Fun wfun 6475 Fn wfn 6476 ⟶wf 6477 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 ℤcz 12465 ..^cfzo 13551 ♯chash 14234 Word cword 14417 cyclShift ccsh 14692 toCycctocyc 33070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-hash 14235 df-word 14418 df-concat 14475 df-substr 14546 df-pfx 14576 df-csh 14693 df-tocyc 33071 |
| This theorem is referenced by: cycpmco2 33097 cyc2fvx 33098 cyc3co2 33104 |
| Copyright terms: Public domain | W3C validator |