| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cycpmfv3 | Structured version Visualization version GIF version | ||
| Description: Values outside of the orbit are unchanged by a cycle. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| cycpmfv3.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| cycpmfv3.2 | ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) |
| Ref | Expression |
|---|---|
| cycpmfv3 | ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | tocycfv.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | tocycfv.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 4 | tocycfv.1 | . . . 4 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 5 | 1, 2, 3, 4 | tocycfv 33064 | . . 3 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 6 | 5 | fveq1d 6828 | . 2 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋)) |
| 7 | f1oi 6806 | . . . 4 ⊢ ( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) | |
| 8 | f1ofn 6769 | . . . 4 ⊢ (( I ↾ (𝐷 ∖ ran 𝑊)):(𝐷 ∖ ran 𝑊)–1-1-onto→(𝐷 ∖ ran 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) | |
| 9 | 7, 8 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊)) |
| 10 | 1zzd 12524 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 11 | cshwf 14724 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 1 ∈ ℤ) → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) | |
| 12 | 3, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑊 cyclShift 1):(0..^(♯‘𝑊))⟶𝐷) |
| 13 | 12 | ffnd 6657 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) Fn (0..^(♯‘𝑊))) |
| 14 | df-f1 6491 | . . . . . . . 8 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 15 | 4, 14 | sylib 218 | . . . . . . 7 ⊢ (𝜑 → (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) |
| 16 | 15 | simprd 495 | . . . . . 6 ⊢ (𝜑 → Fun ◡𝑊) |
| 17 | 16 | funfnd 6517 | . . . . 5 ⊢ (𝜑 → ◡𝑊 Fn dom ◡𝑊) |
| 18 | df-rn 5634 | . . . . . 6 ⊢ ran 𝑊 = dom ◡𝑊 | |
| 19 | 18 | fneq2i 6584 | . . . . 5 ⊢ (◡𝑊 Fn ran 𝑊 ↔ ◡𝑊 Fn dom ◡𝑊) |
| 20 | 17, 19 | sylibr 234 | . . . 4 ⊢ (𝜑 → ◡𝑊 Fn ran 𝑊) |
| 21 | dfdm4 5842 | . . . . . 6 ⊢ dom 𝑊 = ran ◡𝑊 | |
| 22 | 21 | eqimss2i 3999 | . . . . 5 ⊢ ran ◡𝑊 ⊆ dom 𝑊 |
| 23 | wrdfn 14453 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐷 → 𝑊 Fn (0..^(♯‘𝑊))) | |
| 24 | 3, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 Fn (0..^(♯‘𝑊))) |
| 25 | 24 | fndmd 6591 | . . . . 5 ⊢ (𝜑 → dom 𝑊 = (0..^(♯‘𝑊))) |
| 26 | 22, 25 | sseqtrid 3980 | . . . 4 ⊢ (𝜑 → ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) |
| 27 | fnco 6604 | . . . 4 ⊢ (((𝑊 cyclShift 1) Fn (0..^(♯‘𝑊)) ∧ ◡𝑊 Fn ran 𝑊 ∧ ran ◡𝑊 ⊆ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) | |
| 28 | 13, 20, 26, 27 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊) |
| 29 | disjdifr 4426 | . . . 4 ⊢ ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ | |
| 30 | 29 | a1i 11 | . . 3 ⊢ (𝜑 → ((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅) |
| 31 | cycpmfv3.1 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 32 | cycpmfv3.2 | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ ran 𝑊) | |
| 33 | 31, 32 | eldifd 3916 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐷 ∖ ran 𝑊)) |
| 34 | fvun1 6918 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) Fn (𝐷 ∖ ran 𝑊) ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) Fn ran 𝑊 ∧ (((𝐷 ∖ ran 𝑊) ∩ ran 𝑊) = ∅ ∧ 𝑋 ∈ (𝐷 ∖ ran 𝑊))) → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) | |
| 35 | 9, 28, 30, 33, 34 | syl112anc 1376 | . 2 ⊢ (𝜑 → ((( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))‘𝑋) = (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋)) |
| 36 | fvresi 7113 | . . 3 ⊢ (𝑋 ∈ (𝐷 ∖ ran 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) | |
| 37 | 33, 36 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊))‘𝑋) = 𝑋) |
| 38 | 6, 35, 37 | 3eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐶‘𝑊)‘𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 I cid 5517 ◡ccnv 5622 dom cdm 5623 ran crn 5624 ↾ cres 5625 ∘ ccom 5627 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 ℤcz 12489 ..^cfzo 13575 ♯chash 14255 Word cword 14438 cyclShift ccsh 14712 toCycctocyc 33061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-hash 14256 df-word 14439 df-concat 14496 df-substr 14566 df-pfx 14596 df-csh 14713 df-tocyc 33062 |
| This theorem is referenced by: cycpmco2 33088 cyc2fvx 33089 cyc3co2 33095 |
| Copyright terms: Public domain | W3C validator |