Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfzclim Structured version   Visualization version   GIF version

Theorem hashnzfzclim 41519
Description: As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 41517 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfzclim.m (𝜑𝑀 ∈ ℕ)
hashnzfzclim.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
hashnzfzclim (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Distinct variable groups:   𝑘,𝐽   𝑘,𝑀   𝜑,𝑘

Proof of Theorem hashnzfzclim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfzclim.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 484 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑀 ∈ ℕ)
3 hashnzfzclim.j . . . . . 6 (𝜑𝐽 ∈ ℤ)
43adantr 484 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝐽 ∈ ℤ)
5 simpr 488 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑘 ∈ (ℤ‘(𝐽 − 1)))
62, 4, 5hashnzfz 41517 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → (♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) = ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
76oveq1d 7198 . . 3 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘) = (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
87mpteq2dva 5135 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
9 nnuz 12376 . . . . 5 ℕ = (ℤ‘1)
10 1z 12106 . . . . . 6 1 ∈ ℤ
1110a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
121nncnd 11745 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
131nnne0d 11779 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
1412, 13reccld 11500 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℂ)
159eqimss2i 3946 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
16 nnex 11735 . . . . . . . . . 10 ℕ ∈ V
1715, 16climconst2 15008 . . . . . . . . 9 (((1 / 𝑀) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1814, 10, 17sylancl 589 . . . . . . . 8 (𝜑 → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1916mptex 7009 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V
2019a1i 11 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V)
21 ax-1cn 10686 . . . . . . . . 9 1 ∈ ℂ
22 divcnv 15314 . . . . . . . . 9 (1 ∈ ℂ → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
2321, 22mp1i 13 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
24 ovex 7216 . . . . . . . . . . 11 (1 / 𝑀) ∈ V
2524fvconst2 6989 . . . . . . . . . 10 (𝑥 ∈ ℕ → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2625adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2714adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℂ)
2826, 27eqeltrd 2834 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) ∈ ℂ)
29 eqidd 2740 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) = (𝑘 ∈ ℕ ↦ (1 / 𝑘)))
30 oveq2 7191 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (1 / 𝑘) = (1 / 𝑥))
3130adantl 485 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (1 / 𝑘) = (1 / 𝑥))
32 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
33 ovexd 7218 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ V)
3429, 31, 32, 33fvmptd 6795 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) = (1 / 𝑥))
3532nnrecred 11780 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
3634, 35eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℝ)
3736recnd 10760 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℂ)
38 eqidd 2740 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))))
3930oveq2d 7199 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
4039adantl 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
41 ovexd 7218 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ V)
4238, 40, 32, 41fvmptd 6795 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
4326, 34oveq12d 7201 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
4442, 43eqtr4d 2777 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)))
459, 11, 18, 20, 23, 28, 37, 44climsub 15094 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ ((1 / 𝑀) − 0))
4614subid1d 11077 . . . . . . 7 (𝜑 → ((1 / 𝑀) − 0) = (1 / 𝑀))
4745, 46breqtrd 5066 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ (1 / 𝑀))
4816mptex 7009 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V
4948a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V)
501nnrecred 11780 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℝ)
5150adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℝ)
52 nnre 11736 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
5352adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
54 nnne0 11763 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
5554adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ≠ 0)
5653, 55rereccld 11558 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
5751, 56resubcld 11159 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ ℝ)
5842, 57eqeltrd 2834 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ∈ ℝ)
59 eqidd 2740 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)))
60 fvoveq1 7206 . . . . . . . . . 10 (𝑘 = 𝑥 → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
61 id 22 . . . . . . . . . 10 (𝑘 = 𝑥𝑘 = 𝑥)
6260, 61oveq12d 7201 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
6362adantl 485 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
64 ovexd 7218 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ V)
6559, 63, 32, 64fvmptd 6795 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
661adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℕ)
6753, 66nndivred 11783 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℝ)
68 reflcl 13270 . . . . . . . . 9 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
6967, 68syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
7069, 53, 55redivcld 11559 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ ℝ)
7165, 70eqeltrd 2834 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℝ)
7267recnd 10760 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℂ)
73 1cnd 10727 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℂ)
74 nncn 11737 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
7574adantl 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
7672, 73, 75, 55divsubdird 11546 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)))
7712adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℂ)
7813adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ≠ 0)
7975, 77, 78divrecd 11510 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) = (𝑥 · (1 / 𝑀)))
8079oveq1d 7198 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = ((𝑥 · (1 / 𝑀)) / 𝑥))
8127, 75, 55divcan3d 11512 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 · (1 / 𝑀)) / 𝑥) = (1 / 𝑀))
8280, 81eqtrd 2774 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = (1 / 𝑀))
8382oveq1d 7198 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
8476, 83eqtrd 2774 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
85 1red 10733 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℝ)
8667, 85resubcld 11159 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) ∈ ℝ)
87 nnrp 12496 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
8887adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ+)
8969, 85readdcld 10761 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) + 1) ∈ ℝ)
90 flle 13273 . . . . . . . . . . . . . 14 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
9167, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
92 flflp1 13281 . . . . . . . . . . . . . 14 (((𝑥 / 𝑀) ∈ ℝ ∧ (𝑥 / 𝑀) ∈ ℝ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9367, 67, 92syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9491, 93mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1))
9567, 89, 85, 94ltsub1dd 11343 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (((⌊‘(𝑥 / 𝑀)) + 1) − 1))
9669recnd 10760 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℂ)
9796, 73pncand 11089 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) + 1) − 1) = (⌊‘(𝑥 / 𝑀)))
9895, 97breqtrd 5066 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (⌊‘(𝑥 / 𝑀)))
9986, 69, 88, 98ltdiv1dd 12584 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10084, 99eqbrtrrd 5064 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10157, 70, 100ltled 10879 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ≤ ((⌊‘(𝑥 / 𝑀)) / 𝑥))
102 simpr 488 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
103102fvoveq1d 7205 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
104103, 102oveq12d 7201 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10559, 104, 32, 64fvmptd 6795 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
106101, 42, 1053brtr4d 5072 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ≤ ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥))
10769, 67, 88, 91lediv1dd 12585 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ ((𝑥 / 𝑀) / 𝑥))
108107, 82breqtrd 5066 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ (1 / 𝑀))
109105, 108eqbrtrd 5062 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ≤ (1 / 𝑀))
1109, 11, 47, 49, 58, 71, 106, 109climsqz 15101 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ⇝ (1 / 𝑀))
11116mptex 7009 . . . . . 6 (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
112111a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V)
1133zred 12181 . . . . . . . . . 10 (𝜑𝐽 ∈ ℝ)
114 1red 10733 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
115113, 114resubcld 11159 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
116115, 1nndivred 11783 . . . . . . . 8 (𝜑 → ((𝐽 − 1) / 𝑀) ∈ ℝ)
117116flcld 13272 . . . . . . 7 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℤ)
118117zcnd 12182 . . . . . 6 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
119 divcnv 15314 . . . . . 6 ((⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
120118, 119syl 17 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
12171recnd 10760 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
122 eqidd 2740 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)))
123 oveq2 7191 . . . . . . . 8 (𝑘 = 𝑥 → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
124123adantl 485 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
125 ovexd 7218 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ V)
126122, 124, 32, 125fvmptd 6795 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
127118adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
128127, 75, 55divcld 11507 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ ℂ)
129126, 128eqeltrd 2834 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
13096, 127, 75, 55divsubdird 11546 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
131 eqidd 2740 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
13260oveq1d 7198 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) = ((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
133132, 61oveq12d 7201 . . . . . . . 8 (𝑘 = 𝑥 → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
134133adantl 485 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
135 ovexd 7218 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) ∈ V)
136131, 134, 32, 135fvmptd 6795 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
13765, 126oveq12d 7201 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
138130, 136, 1373eqtr4d 2784 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)))
1399, 11, 110, 112, 120, 121, 129, 138climsub 15094 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ ((1 / 𝑀) − 0))
140139, 46breqtrd 5066 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
141 uzssz 12358 . . . . . . 7 (ℤ‘(𝐽 − 1)) ⊆ ℤ
142 resmpt 5889 . . . . . . 7 ((ℤ‘(𝐽 − 1)) ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
143141, 142ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
144143breq1i 5047 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1453, 11zsubcld 12186 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
146 zex 12084 . . . . . . 7 ℤ ∈ V
147146mptex 7009 . . . . . 6 (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
148 climres 15035 . . . . . 6 (((𝐽 − 1) ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
149145, 147, 148sylancl 589 . . . . 5 (𝜑 → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
150144, 149bitr3id 288 . . . 4 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
1519reseq2i 5832 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1))
152151breq1i 5047 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀))
153 nnssz 12096 . . . . . . 7 ℕ ⊆ ℤ
154 resmpt 5889 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
155153, 154ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
156155breq1i 5047 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
157 climres 15035 . . . . . 6 ((1 ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
15810, 147, 157mp2an 692 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
159152, 156, 1583bitr3i 304 . . . 4 ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
160150, 159bitr4di 292 . . 3 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
161140, 160mpbird 260 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1628, 161eqbrtrd 5062 1 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  Vcvv 3400  cin 3852  wss 3853  {csn 4526   class class class wbr 5040  cmpt 5120   × cxp 5533  cres 5537  cima 5538  cfv 6350  (class class class)co 7183  cc 10626  cr 10627  0cc0 10628  1c1 10629   + caddc 10631   · cmul 10633   < clt 10766  cle 10767  cmin 10961   / cdiv 11388  cn 11729  cz 12075  cuz 12337  +crp 12485  ...cfz 12994  cfl 13264  chash 13795  cli 14944  cdvds 15712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-pm 8453  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-sup 8992  df-inf 8993  df-card 9454  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-2 11792  df-3 11793  df-n0 11990  df-z 12076  df-uz 12338  df-rp 12486  df-fz 12995  df-fl 13266  df-seq 13474  df-exp 13535  df-hash 13796  df-cj 14561  df-re 14562  df-im 14563  df-sqrt 14697  df-abs 14698  df-clim 14948  df-rlim 14949  df-dvds 15713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator