Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfzclim Structured version   Visualization version   GIF version

Theorem hashnzfzclim 39015
Description: As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 39013 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfzclim.m (𝜑𝑀 ∈ ℕ)
hashnzfzclim.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
hashnzfzclim (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Distinct variable groups:   𝑘,𝐽   𝑘,𝑀   𝜑,𝑘

Proof of Theorem hashnzfzclim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfzclim.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 468 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑀 ∈ ℕ)
3 hashnzfzclim.j . . . . . 6 (𝜑𝐽 ∈ ℤ)
43adantr 468 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝐽 ∈ ℤ)
5 simpr 473 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑘 ∈ (ℤ‘(𝐽 − 1)))
62, 4, 5hashnzfz 39013 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → (♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) = ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
76oveq1d 6885 . . 3 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘) = (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
87mpteq2dva 4938 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
9 nnuz 11937 . . . . 5 ℕ = (ℤ‘1)
10 1z 11669 . . . . . 6 1 ∈ ℤ
1110a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
121nncnd 11317 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
131nnne0d 11347 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
1412, 13reccld 11075 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℂ)
159eqimss2i 3857 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
16 nnex 11307 . . . . . . . . . 10 ℕ ∈ V
1715, 16climconst2 14498 . . . . . . . . 9 (((1 / 𝑀) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1814, 10, 17sylancl 576 . . . . . . . 8 (𝜑 → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1916mptex 6707 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V
2019a1i 11 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V)
21 ax-1cn 10275 . . . . . . . . 9 1 ∈ ℂ
22 divcnv 14803 . . . . . . . . 9 (1 ∈ ℂ → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
2321, 22mp1i 13 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
24 ovex 6902 . . . . . . . . . . 11 (1 / 𝑀) ∈ V
2524fvconst2 6690 . . . . . . . . . 10 (𝑥 ∈ ℕ → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2625adantl 469 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2714adantr 468 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℂ)
2826, 27eqeltrd 2885 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) ∈ ℂ)
29 eqidd 2807 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) = (𝑘 ∈ ℕ ↦ (1 / 𝑘)))
30 oveq2 6878 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (1 / 𝑘) = (1 / 𝑥))
3130adantl 469 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (1 / 𝑘) = (1 / 𝑥))
32 simpr 473 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
33 ovexd 6904 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ V)
3429, 31, 32, 33fvmptd 6505 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) = (1 / 𝑥))
3532nnrecred 11348 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
3634, 35eqeltrd 2885 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℝ)
3736recnd 10349 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℂ)
38 eqidd 2807 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))))
3930oveq2d 6886 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
4039adantl 469 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
41 ovexd 6904 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ V)
4238, 40, 32, 41fvmptd 6505 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
4326, 34oveq12d 6888 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
4442, 43eqtr4d 2843 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)))
459, 11, 18, 20, 23, 28, 37, 44climsub 14583 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ ((1 / 𝑀) − 0))
4614subid1d 10662 . . . . . . 7 (𝜑 → ((1 / 𝑀) − 0) = (1 / 𝑀))
4745, 46breqtrd 4870 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ (1 / 𝑀))
4816mptex 6707 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V
4948a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V)
501nnrecred 11348 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℝ)
5150adantr 468 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℝ)
52 nnre 11308 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
5352adantl 469 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
54 nnne0 11335 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
5554adantl 469 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ≠ 0)
5653, 55rereccld 11133 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
5751, 56resubcld 10739 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ ℝ)
5842, 57eqeltrd 2885 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ∈ ℝ)
59 eqidd 2807 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)))
60 fvoveq1 6893 . . . . . . . . . 10 (𝑘 = 𝑥 → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
61 id 22 . . . . . . . . . 10 (𝑘 = 𝑥𝑘 = 𝑥)
6260, 61oveq12d 6888 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
6362adantl 469 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
64 ovexd 6904 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ V)
6559, 63, 32, 64fvmptd 6505 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
661adantr 468 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℕ)
6753, 66nndivred 11351 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℝ)
68 reflcl 12817 . . . . . . . . 9 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
6967, 68syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
7069, 53, 55redivcld 11134 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ ℝ)
7165, 70eqeltrd 2885 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℝ)
7267recnd 10349 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℂ)
73 1cnd 10316 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℂ)
74 nncn 11309 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
7574adantl 469 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
7672, 73, 75, 55divsubdird 11121 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)))
7712adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℂ)
7813adantr 468 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ≠ 0)
7975, 77, 78divrecd 11085 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) = (𝑥 · (1 / 𝑀)))
8079oveq1d 6885 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = ((𝑥 · (1 / 𝑀)) / 𝑥))
8127, 75, 55divcan3d 11087 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 · (1 / 𝑀)) / 𝑥) = (1 / 𝑀))
8280, 81eqtrd 2840 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = (1 / 𝑀))
8382oveq1d 6885 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
8476, 83eqtrd 2840 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
85 1red 10322 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℝ)
8667, 85resubcld 10739 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) ∈ ℝ)
87 nnrp 12052 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
8887adantl 469 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ+)
8969, 85readdcld 10350 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) + 1) ∈ ℝ)
90 flle 12820 . . . . . . . . . . . . . 14 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
9167, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
92 flflp1 12828 . . . . . . . . . . . . . 14 (((𝑥 / 𝑀) ∈ ℝ ∧ (𝑥 / 𝑀) ∈ ℝ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9367, 67, 92syl2anc 575 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9491, 93mpbid 223 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1))
9567, 89, 85, 94ltsub1dd 10920 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (((⌊‘(𝑥 / 𝑀)) + 1) − 1))
9669recnd 10349 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℂ)
9796, 73pncand 10674 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) + 1) − 1) = (⌊‘(𝑥 / 𝑀)))
9895, 97breqtrd 4870 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (⌊‘(𝑥 / 𝑀)))
9986, 69, 88, 98ltdiv1dd 12139 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10084, 99eqbrtrrd 4868 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10157, 70, 100ltled 10466 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ≤ ((⌊‘(𝑥 / 𝑀)) / 𝑥))
102 simpr 473 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
103102fvoveq1d 6892 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
104103, 102oveq12d 6888 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10559, 104, 32, 64fvmptd 6505 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
106101, 42, 1053brtr4d 4876 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ≤ ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥))
10769, 67, 88, 91lediv1dd 12140 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ ((𝑥 / 𝑀) / 𝑥))
108107, 82breqtrd 4870 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ (1 / 𝑀))
109105, 108eqbrtrd 4866 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ≤ (1 / 𝑀))
1109, 11, 47, 49, 58, 71, 106, 109climsqz 14590 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ⇝ (1 / 𝑀))
11116mptex 6707 . . . . . 6 (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
112111a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V)
1133zred 11744 . . . . . . . . . 10 (𝜑𝐽 ∈ ℝ)
114 1red 10322 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
115113, 114resubcld 10739 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
116115, 1nndivred 11351 . . . . . . . 8 (𝜑 → ((𝐽 − 1) / 𝑀) ∈ ℝ)
117116flcld 12819 . . . . . . 7 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℤ)
118117zcnd 11745 . . . . . 6 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
119 divcnv 14803 . . . . . 6 ((⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
120118, 119syl 17 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
12171recnd 10349 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
122 eqidd 2807 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)))
123 oveq2 6878 . . . . . . . 8 (𝑘 = 𝑥 → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
124123adantl 469 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
125 ovexd 6904 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ V)
126122, 124, 32, 125fvmptd 6505 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
127118adantr 468 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
128127, 75, 55divcld 11082 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ ℂ)
129126, 128eqeltrd 2885 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
13096, 127, 75, 55divsubdird 11121 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
131 eqidd 2807 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
13260oveq1d 6885 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) = ((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
133132, 61oveq12d 6888 . . . . . . . 8 (𝑘 = 𝑥 → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
134133adantl 469 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
135 ovexd 6904 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) ∈ V)
136131, 134, 32, 135fvmptd 6505 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
13765, 126oveq12d 6888 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
138130, 136, 1373eqtr4d 2850 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)))
1399, 11, 110, 112, 120, 121, 129, 138climsub 14583 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ ((1 / 𝑀) − 0))
140139, 46breqtrd 4870 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
141 uzssz 11920 . . . . . . 7 (ℤ‘(𝐽 − 1)) ⊆ ℤ
142 resmpt 5654 . . . . . . 7 ((ℤ‘(𝐽 − 1)) ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
143141, 142ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
144143breq1i 4851 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1453, 11zsubcld 11749 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
146 zex 11648 . . . . . . 7 ℤ ∈ V
147146mptex 6707 . . . . . 6 (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
148 climres 14525 . . . . . 6 (((𝐽 − 1) ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
149145, 147, 148sylancl 576 . . . . 5 (𝜑 → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
150144, 149syl5bbr 276 . . . 4 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
1519reseq2i 5594 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1))
152151breq1i 4851 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀))
153 nnssz 11659 . . . . . . 7 ℕ ⊆ ℤ
154 resmpt 5654 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
155153, 154ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
156155breq1i 4851 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
157 climres 14525 . . . . . 6 ((1 ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
15810, 147, 157mp2an 675 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
159152, 156, 1583bitr3i 292 . . . 4 ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
160150, 159syl6bbr 280 . . 3 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
161140, 160mpbird 248 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1628, 161eqbrtrd 4866 1 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  Vcvv 3391  cin 3768  wss 3769  {csn 4370   class class class wbr 4844  cmpt 4923   × cxp 5309  cres 5313  cima 5314  cfv 6097  (class class class)co 6870  cc 10215  cr 10216  0cc0 10217  1c1 10218   + caddc 10220   · cmul 10222   < clt 10355  cle 10356  cmin 10547   / cdiv 10965  cn 11301  cz 11639  cuz 11900  +crp 12042  ...cfz 12545  cfl 12811  chash 13333  cli 14434  cdvds 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294  ax-pre-sup 10295
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-1o 7792  df-er 7975  df-pm 8091  df-en 8189  df-dom 8190  df-sdom 8191  df-fin 8192  df-sup 8583  df-inf 8584  df-card 9044  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-div 10966  df-nn 11302  df-2 11360  df-3 11361  df-n0 11556  df-z 11640  df-uz 11901  df-rp 12043  df-fz 12546  df-fl 12813  df-seq 13021  df-exp 13080  df-hash 13334  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-dvds 15200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator