Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfzclim Structured version   Visualization version   GIF version

Theorem hashnzfzclim 44414
Description: As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 44412 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfzclim.m (𝜑𝑀 ∈ ℕ)
hashnzfzclim.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
hashnzfzclim (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Distinct variable groups:   𝑘,𝐽   𝑘,𝑀   𝜑,𝑘

Proof of Theorem hashnzfzclim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfzclim.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 480 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑀 ∈ ℕ)
3 hashnzfzclim.j . . . . . 6 (𝜑𝐽 ∈ ℤ)
43adantr 480 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝐽 ∈ ℤ)
5 simpr 484 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑘 ∈ (ℤ‘(𝐽 − 1)))
62, 4, 5hashnzfz 44412 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → (♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) = ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
76oveq1d 7361 . . 3 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘) = (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
87mpteq2dva 5182 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
9 nnuz 12775 . . . . 5 ℕ = (ℤ‘1)
10 1z 12502 . . . . . 6 1 ∈ ℤ
1110a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
121nncnd 12141 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
131nnne0d 12175 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
1412, 13reccld 11890 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℂ)
159eqimss2i 3991 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
16 nnex 12131 . . . . . . . . . 10 ℕ ∈ V
1715, 16climconst2 15455 . . . . . . . . 9 (((1 / 𝑀) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1814, 10, 17sylancl 586 . . . . . . . 8 (𝜑 → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1916mptex 7157 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V
2019a1i 11 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V)
21 ax-1cn 11064 . . . . . . . . 9 1 ∈ ℂ
22 divcnv 15760 . . . . . . . . 9 (1 ∈ ℂ → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
2321, 22mp1i 13 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
24 ovex 7379 . . . . . . . . . . 11 (1 / 𝑀) ∈ V
2524fvconst2 7138 . . . . . . . . . 10 (𝑥 ∈ ℕ → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2625adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2714adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℂ)
2826, 27eqeltrd 2831 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) ∈ ℂ)
29 eqidd 2732 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) = (𝑘 ∈ ℕ ↦ (1 / 𝑘)))
30 oveq2 7354 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (1 / 𝑘) = (1 / 𝑥))
3130adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (1 / 𝑘) = (1 / 𝑥))
32 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
33 ovexd 7381 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ V)
3429, 31, 32, 33fvmptd 6936 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) = (1 / 𝑥))
3532nnrecred 12176 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
3634, 35eqeltrd 2831 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℝ)
3736recnd 11140 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℂ)
38 eqidd 2732 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))))
3930oveq2d 7362 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
4039adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
41 ovexd 7381 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ V)
4238, 40, 32, 41fvmptd 6936 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
4326, 34oveq12d 7364 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
4442, 43eqtr4d 2769 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)))
459, 11, 18, 20, 23, 28, 37, 44climsub 15541 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ ((1 / 𝑀) − 0))
4614subid1d 11461 . . . . . . 7 (𝜑 → ((1 / 𝑀) − 0) = (1 / 𝑀))
4745, 46breqtrd 5115 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ (1 / 𝑀))
4816mptex 7157 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V
4948a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V)
501nnrecred 12176 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℝ)
5150adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℝ)
52 nnre 12132 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
5352adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
54 nnne0 12159 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
5554adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ≠ 0)
5653, 55rereccld 11948 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
5751, 56resubcld 11545 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ ℝ)
5842, 57eqeltrd 2831 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ∈ ℝ)
59 eqidd 2732 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)))
60 fvoveq1 7369 . . . . . . . . . 10 (𝑘 = 𝑥 → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
61 id 22 . . . . . . . . . 10 (𝑘 = 𝑥𝑘 = 𝑥)
6260, 61oveq12d 7364 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
6362adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
64 ovexd 7381 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ V)
6559, 63, 32, 64fvmptd 6936 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
661adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℕ)
6753, 66nndivred 12179 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℝ)
68 reflcl 13700 . . . . . . . . 9 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
6967, 68syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
7069, 53, 55redivcld 11949 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ ℝ)
7165, 70eqeltrd 2831 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℝ)
7267recnd 11140 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℂ)
73 1cnd 11107 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℂ)
74 nncn 12133 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
7574adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
7672, 73, 75, 55divsubdird 11936 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)))
7712adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℂ)
7813adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ≠ 0)
7975, 77, 78divrecd 11900 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) = (𝑥 · (1 / 𝑀)))
8079oveq1d 7361 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = ((𝑥 · (1 / 𝑀)) / 𝑥))
8127, 75, 55divcan3d 11902 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 · (1 / 𝑀)) / 𝑥) = (1 / 𝑀))
8280, 81eqtrd 2766 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = (1 / 𝑀))
8382oveq1d 7361 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
8476, 83eqtrd 2766 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
85 1red 11113 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℝ)
8667, 85resubcld 11545 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) ∈ ℝ)
87 nnrp 12902 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
8887adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ+)
8969, 85readdcld 11141 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) + 1) ∈ ℝ)
90 flle 13703 . . . . . . . . . . . . . 14 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
9167, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
92 flflp1 13711 . . . . . . . . . . . . . 14 (((𝑥 / 𝑀) ∈ ℝ ∧ (𝑥 / 𝑀) ∈ ℝ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9367, 67, 92syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9491, 93mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1))
9567, 89, 85, 94ltsub1dd 11729 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (((⌊‘(𝑥 / 𝑀)) + 1) − 1))
9669recnd 11140 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℂ)
9796, 73pncand 11473 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) + 1) − 1) = (⌊‘(𝑥 / 𝑀)))
9895, 97breqtrd 5115 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (⌊‘(𝑥 / 𝑀)))
9986, 69, 88, 98ltdiv1dd 12991 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10084, 99eqbrtrrd 5113 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10157, 70, 100ltled 11261 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ≤ ((⌊‘(𝑥 / 𝑀)) / 𝑥))
102 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
103102fvoveq1d 7368 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
104103, 102oveq12d 7364 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10559, 104, 32, 64fvmptd 6936 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
106101, 42, 1053brtr4d 5121 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ≤ ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥))
10769, 67, 88, 91lediv1dd 12992 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ ((𝑥 / 𝑀) / 𝑥))
108107, 82breqtrd 5115 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ (1 / 𝑀))
109105, 108eqbrtrd 5111 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ≤ (1 / 𝑀))
1109, 11, 47, 49, 58, 71, 106, 109climsqz 15548 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ⇝ (1 / 𝑀))
11116mptex 7157 . . . . . 6 (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
112111a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V)
1133zred 12577 . . . . . . . . . 10 (𝜑𝐽 ∈ ℝ)
114 1red 11113 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
115113, 114resubcld 11545 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
116115, 1nndivred 12179 . . . . . . . 8 (𝜑 → ((𝐽 − 1) / 𝑀) ∈ ℝ)
117116flcld 13702 . . . . . . 7 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℤ)
118117zcnd 12578 . . . . . 6 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
119 divcnv 15760 . . . . . 6 ((⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
120118, 119syl 17 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
12171recnd 11140 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
122 eqidd 2732 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)))
123 oveq2 7354 . . . . . . . 8 (𝑘 = 𝑥 → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
124123adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
125 ovexd 7381 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ V)
126122, 124, 32, 125fvmptd 6936 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
127118adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
128127, 75, 55divcld 11897 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ ℂ)
129126, 128eqeltrd 2831 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
13096, 127, 75, 55divsubdird 11936 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
131 eqidd 2732 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
13260oveq1d 7361 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) = ((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
133132, 61oveq12d 7364 . . . . . . . 8 (𝑘 = 𝑥 → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
134133adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
135 ovexd 7381 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) ∈ V)
136131, 134, 32, 135fvmptd 6936 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
13765, 126oveq12d 7364 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
138130, 136, 1373eqtr4d 2776 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)))
1399, 11, 110, 112, 120, 121, 129, 138climsub 15541 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ ((1 / 𝑀) − 0))
140139, 46breqtrd 5115 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
141 uzssz 12753 . . . . . . 7 (ℤ‘(𝐽 − 1)) ⊆ ℤ
142 resmpt 5985 . . . . . . 7 ((ℤ‘(𝐽 − 1)) ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
143141, 142ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
144143breq1i 5096 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1453, 11zsubcld 12582 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
146 zex 12477 . . . . . . 7 ℤ ∈ V
147146mptex 7157 . . . . . 6 (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
148 climres 15482 . . . . . 6 (((𝐽 − 1) ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
149145, 147, 148sylancl 586 . . . . 5 (𝜑 → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
150144, 149bitr3id 285 . . . 4 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
1519reseq2i 5924 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1))
152151breq1i 5096 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀))
153 nnssz 12490 . . . . . . 7 ℕ ⊆ ℤ
154 resmpt 5985 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
155153, 154ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
156155breq1i 5096 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
157 climres 15482 . . . . . 6 ((1 ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
15810, 147, 157mp2an 692 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
159152, 156, 1583bitr3i 301 . . . 4 ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
160150, 159bitr4di 289 . . 3 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
161140, 160mpbird 257 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1628, 161eqbrtrd 5111 1 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cin 3896  wss 3897  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  cres 5616  cima 5617  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  cz 12468  cuz 12732  +crp 12890  ...cfz 13407  cfl 13694  chash 14237  cli 15391  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-dvds 16164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator