Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfzclim Structured version   Visualization version   GIF version

Theorem hashnzfzclim 44304
Description: As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 44302 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfzclim.m (𝜑𝑀 ∈ ℕ)
hashnzfzclim.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
hashnzfzclim (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Distinct variable groups:   𝑘,𝐽   𝑘,𝑀   𝜑,𝑘

Proof of Theorem hashnzfzclim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfzclim.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 480 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑀 ∈ ℕ)
3 hashnzfzclim.j . . . . . 6 (𝜑𝐽 ∈ ℤ)
43adantr 480 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝐽 ∈ ℤ)
5 simpr 484 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑘 ∈ (ℤ‘(𝐽 − 1)))
62, 4, 5hashnzfz 44302 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → (♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) = ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
76oveq1d 7384 . . 3 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘) = (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
87mpteq2dva 5195 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
9 nnuz 12812 . . . . 5 ℕ = (ℤ‘1)
10 1z 12539 . . . . . 6 1 ∈ ℤ
1110a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
121nncnd 12178 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
131nnne0d 12212 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
1412, 13reccld 11927 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℂ)
159eqimss2i 4005 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
16 nnex 12168 . . . . . . . . . 10 ℕ ∈ V
1715, 16climconst2 15490 . . . . . . . . 9 (((1 / 𝑀) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1814, 10, 17sylancl 586 . . . . . . . 8 (𝜑 → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1916mptex 7179 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V
2019a1i 11 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V)
21 ax-1cn 11102 . . . . . . . . 9 1 ∈ ℂ
22 divcnv 15795 . . . . . . . . 9 (1 ∈ ℂ → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
2321, 22mp1i 13 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
24 ovex 7402 . . . . . . . . . . 11 (1 / 𝑀) ∈ V
2524fvconst2 7160 . . . . . . . . . 10 (𝑥 ∈ ℕ → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2625adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2714adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℂ)
2826, 27eqeltrd 2828 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) ∈ ℂ)
29 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) = (𝑘 ∈ ℕ ↦ (1 / 𝑘)))
30 oveq2 7377 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (1 / 𝑘) = (1 / 𝑥))
3130adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (1 / 𝑘) = (1 / 𝑥))
32 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
33 ovexd 7404 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ V)
3429, 31, 32, 33fvmptd 6957 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) = (1 / 𝑥))
3532nnrecred 12213 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
3634, 35eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℝ)
3736recnd 11178 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℂ)
38 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))))
3930oveq2d 7385 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
4039adantl 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
41 ovexd 7404 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ V)
4238, 40, 32, 41fvmptd 6957 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
4326, 34oveq12d 7387 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
4442, 43eqtr4d 2767 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)))
459, 11, 18, 20, 23, 28, 37, 44climsub 15576 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ ((1 / 𝑀) − 0))
4614subid1d 11498 . . . . . . 7 (𝜑 → ((1 / 𝑀) − 0) = (1 / 𝑀))
4745, 46breqtrd 5128 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ (1 / 𝑀))
4816mptex 7179 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V
4948a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V)
501nnrecred 12213 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℝ)
5150adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℝ)
52 nnre 12169 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
5352adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
54 nnne0 12196 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
5554adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ≠ 0)
5653, 55rereccld 11985 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
5751, 56resubcld 11582 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ ℝ)
5842, 57eqeltrd 2828 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ∈ ℝ)
59 eqidd 2730 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)))
60 fvoveq1 7392 . . . . . . . . . 10 (𝑘 = 𝑥 → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
61 id 22 . . . . . . . . . 10 (𝑘 = 𝑥𝑘 = 𝑥)
6260, 61oveq12d 7387 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
6362adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
64 ovexd 7404 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ V)
6559, 63, 32, 64fvmptd 6957 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
661adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℕ)
6753, 66nndivred 12216 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℝ)
68 reflcl 13734 . . . . . . . . 9 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
6967, 68syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
7069, 53, 55redivcld 11986 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ ℝ)
7165, 70eqeltrd 2828 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℝ)
7267recnd 11178 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℂ)
73 1cnd 11145 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℂ)
74 nncn 12170 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
7574adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
7672, 73, 75, 55divsubdird 11973 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)))
7712adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℂ)
7813adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ≠ 0)
7975, 77, 78divrecd 11937 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) = (𝑥 · (1 / 𝑀)))
8079oveq1d 7384 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = ((𝑥 · (1 / 𝑀)) / 𝑥))
8127, 75, 55divcan3d 11939 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 · (1 / 𝑀)) / 𝑥) = (1 / 𝑀))
8280, 81eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = (1 / 𝑀))
8382oveq1d 7384 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
8476, 83eqtrd 2764 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
85 1red 11151 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℝ)
8667, 85resubcld 11582 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) ∈ ℝ)
87 nnrp 12939 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
8887adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ+)
8969, 85readdcld 11179 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) + 1) ∈ ℝ)
90 flle 13737 . . . . . . . . . . . . . 14 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
9167, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
92 flflp1 13745 . . . . . . . . . . . . . 14 (((𝑥 / 𝑀) ∈ ℝ ∧ (𝑥 / 𝑀) ∈ ℝ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9367, 67, 92syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9491, 93mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1))
9567, 89, 85, 94ltsub1dd 11766 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (((⌊‘(𝑥 / 𝑀)) + 1) − 1))
9669recnd 11178 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℂ)
9796, 73pncand 11510 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) + 1) − 1) = (⌊‘(𝑥 / 𝑀)))
9895, 97breqtrd 5128 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (⌊‘(𝑥 / 𝑀)))
9986, 69, 88, 98ltdiv1dd 13028 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10084, 99eqbrtrrd 5126 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10157, 70, 100ltled 11298 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ≤ ((⌊‘(𝑥 / 𝑀)) / 𝑥))
102 simpr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
103102fvoveq1d 7391 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
104103, 102oveq12d 7387 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10559, 104, 32, 64fvmptd 6957 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
106101, 42, 1053brtr4d 5134 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ≤ ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥))
10769, 67, 88, 91lediv1dd 13029 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ ((𝑥 / 𝑀) / 𝑥))
108107, 82breqtrd 5128 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ (1 / 𝑀))
109105, 108eqbrtrd 5124 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ≤ (1 / 𝑀))
1109, 11, 47, 49, 58, 71, 106, 109climsqz 15583 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ⇝ (1 / 𝑀))
11116mptex 7179 . . . . . 6 (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
112111a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V)
1133zred 12614 . . . . . . . . . 10 (𝜑𝐽 ∈ ℝ)
114 1red 11151 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
115113, 114resubcld 11582 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
116115, 1nndivred 12216 . . . . . . . 8 (𝜑 → ((𝐽 − 1) / 𝑀) ∈ ℝ)
117116flcld 13736 . . . . . . 7 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℤ)
118117zcnd 12615 . . . . . 6 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
119 divcnv 15795 . . . . . 6 ((⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
120118, 119syl 17 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
12171recnd 11178 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
122 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)))
123 oveq2 7377 . . . . . . . 8 (𝑘 = 𝑥 → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
124123adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
125 ovexd 7404 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ V)
126122, 124, 32, 125fvmptd 6957 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
127118adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
128127, 75, 55divcld 11934 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ ℂ)
129126, 128eqeltrd 2828 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
13096, 127, 75, 55divsubdird 11973 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
131 eqidd 2730 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
13260oveq1d 7384 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) = ((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
133132, 61oveq12d 7387 . . . . . . . 8 (𝑘 = 𝑥 → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
134133adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
135 ovexd 7404 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) ∈ V)
136131, 134, 32, 135fvmptd 6957 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
13765, 126oveq12d 7387 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
138130, 136, 1373eqtr4d 2774 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)))
1399, 11, 110, 112, 120, 121, 129, 138climsub 15576 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ ((1 / 𝑀) − 0))
140139, 46breqtrd 5128 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
141 uzssz 12790 . . . . . . 7 (ℤ‘(𝐽 − 1)) ⊆ ℤ
142 resmpt 5997 . . . . . . 7 ((ℤ‘(𝐽 − 1)) ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
143141, 142ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
144143breq1i 5109 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1453, 11zsubcld 12619 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
146 zex 12514 . . . . . . 7 ℤ ∈ V
147146mptex 7179 . . . . . 6 (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
148 climres 15517 . . . . . 6 (((𝐽 − 1) ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
149145, 147, 148sylancl 586 . . . . 5 (𝜑 → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
150144, 149bitr3id 285 . . . 4 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
1519reseq2i 5936 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1))
152151breq1i 5109 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀))
153 nnssz 12527 . . . . . . 7 ℕ ⊆ ℤ
154 resmpt 5997 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
155153, 154ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
156155breq1i 5109 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
157 climres 15517 . . . . . 6 ((1 ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
15810, 147, 157mp2an 692 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
159152, 156, 1583bitr3i 301 . . . 4 ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
160150, 159bitr4di 289 . . 3 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
161140, 160mpbird 257 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1628, 161eqbrtrd 5124 1 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cin 3910  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183   × cxp 5629  cres 5633  cima 5634  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  cfl 13728  chash 14271  cli 15426  cdvds 16198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-dvds 16199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator