Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hashnzfzclim Structured version   Visualization version   GIF version

Theorem hashnzfzclim 41026
Description: As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 41024 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Hypotheses
Ref Expression
hashnzfzclim.m (𝜑𝑀 ∈ ℕ)
hashnzfzclim.j (𝜑𝐽 ∈ ℤ)
Assertion
Ref Expression
hashnzfzclim (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Distinct variable groups:   𝑘,𝐽   𝑘,𝑀   𝜑,𝑘

Proof of Theorem hashnzfzclim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashnzfzclim.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
21adantr 484 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑀 ∈ ℕ)
3 hashnzfzclim.j . . . . . 6 (𝜑𝐽 ∈ ℤ)
43adantr 484 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝐽 ∈ ℤ)
5 simpr 488 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → 𝑘 ∈ (ℤ‘(𝐽 − 1)))
62, 4, 5hashnzfz 41024 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → (♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) = ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
76oveq1d 7150 . . 3 ((𝜑𝑘 ∈ (ℤ‘(𝐽 − 1))) → ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘) = (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
87mpteq2dva 5125 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
9 nnuz 12269 . . . . 5 ℕ = (ℤ‘1)
10 1z 12000 . . . . . 6 1 ∈ ℤ
1110a1i 11 . . . . 5 (𝜑 → 1 ∈ ℤ)
121nncnd 11641 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
131nnne0d 11675 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
1412, 13reccld 11398 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℂ)
159eqimss2i 3974 . . . . . . . . . 10 (ℤ‘1) ⊆ ℕ
16 nnex 11631 . . . . . . . . . 10 ℕ ∈ V
1715, 16climconst2 14897 . . . . . . . . 9 (((1 / 𝑀) ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1814, 10, 17sylancl 589 . . . . . . . 8 (𝜑 → (ℕ × {(1 / 𝑀)}) ⇝ (1 / 𝑀))
1916mptex 6963 . . . . . . . . 9 (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V
2019a1i 11 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ∈ V)
21 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
22 divcnv 15200 . . . . . . . . 9 (1 ∈ ℂ → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
2321, 22mp1i 13 . . . . . . . 8 (𝜑 → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) ⇝ 0)
24 ovex 7168 . . . . . . . . . . 11 (1 / 𝑀) ∈ V
2524fvconst2 6943 . . . . . . . . . 10 (𝑥 ∈ ℕ → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2625adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) = (1 / 𝑀))
2714adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℂ)
2826, 27eqeltrd 2890 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((ℕ × {(1 / 𝑀)})‘𝑥) ∈ ℂ)
29 eqidd 2799 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (1 / 𝑘)) = (𝑘 ∈ ℕ ↦ (1 / 𝑘)))
30 oveq2 7143 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (1 / 𝑘) = (1 / 𝑥))
3130adantl 485 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (1 / 𝑘) = (1 / 𝑥))
32 simpr 488 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
33 ovexd 7170 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ V)
3429, 31, 32, 33fvmptd 6752 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) = (1 / 𝑥))
3532nnrecred 11676 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
3634, 35eqeltrd 2890 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℝ)
3736recnd 10658 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥) ∈ ℂ)
38 eqidd 2799 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))))
3930oveq2d 7151 . . . . . . . . . . 11 (𝑘 = 𝑥 → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
4039adantl 485 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((1 / 𝑀) − (1 / 𝑘)) = ((1 / 𝑀) − (1 / 𝑥)))
41 ovexd 7170 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ V)
4238, 40, 32, 41fvmptd 6752 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
4326, 34oveq12d 7153 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
4442, 43eqtr4d 2836 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) = (((ℕ × {(1 / 𝑀)})‘𝑥) − ((𝑘 ∈ ℕ ↦ (1 / 𝑘))‘𝑥)))
459, 11, 18, 20, 23, 28, 37, 44climsub 14982 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ ((1 / 𝑀) − 0))
4614subid1d 10975 . . . . . . 7 (𝜑 → ((1 / 𝑀) − 0) = (1 / 𝑀))
4745, 46breqtrd 5056 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘))) ⇝ (1 / 𝑀))
4816mptex 6963 . . . . . . 7 (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V
4948a1i 11 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ∈ V)
501nnrecred 11676 . . . . . . . . 9 (𝜑 → (1 / 𝑀) ∈ ℝ)
5150adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑀) ∈ ℝ)
52 nnre 11632 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
5352adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ)
54 nnne0 11659 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
5554adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → 𝑥 ≠ 0)
5653, 55rereccld 11456 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (1 / 𝑥) ∈ ℝ)
5751, 56resubcld 11057 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ∈ ℝ)
5842, 57eqeltrd 2890 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ∈ ℝ)
59 eqidd 2799 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)))
60 fvoveq1 7158 . . . . . . . . . 10 (𝑘 = 𝑥 → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
61 id 22 . . . . . . . . . 10 (𝑘 = 𝑥𝑘 = 𝑥)
6260, 61oveq12d 7153 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
6362adantl 485 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
64 ovexd 7170 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ V)
6559, 63, 32, 64fvmptd 6752 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
661adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℕ)
6753, 66nndivred 11679 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℝ)
68 reflcl 13161 . . . . . . . . 9 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
6967, 68syl 17 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℝ)
7069, 53, 55redivcld 11457 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ∈ ℝ)
7165, 70eqeltrd 2890 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℝ)
7267recnd 10658 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) ∈ ℂ)
73 1cnd 10625 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℂ)
74 nncn 11633 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
7574adantl 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℂ)
7672, 73, 75, 55divsubdird 11444 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)))
7712adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ∈ ℂ)
7813adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℕ) → 𝑀 ≠ 0)
7975, 77, 78divrecd 11408 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) = (𝑥 · (1 / 𝑀)))
8079oveq1d 7150 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = ((𝑥 · (1 / 𝑀)) / 𝑥))
8127, 75, 55divcan3d 11410 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((𝑥 · (1 / 𝑀)) / 𝑥) = (1 / 𝑀))
8280, 81eqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) / 𝑥) = (1 / 𝑀))
8382oveq1d 7150 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) / 𝑥) − (1 / 𝑥)) = ((1 / 𝑀) − (1 / 𝑥)))
8476, 83eqtrd 2833 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) = ((1 / 𝑀) − (1 / 𝑥)))
85 1red 10631 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → 1 ∈ ℝ)
8667, 85resubcld 11057 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) ∈ ℝ)
87 nnrp 12388 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
8887adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → 𝑥 ∈ ℝ+)
8969, 85readdcld 10659 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) + 1) ∈ ℝ)
90 flle 13164 . . . . . . . . . . . . . 14 ((𝑥 / 𝑀) ∈ ℝ → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
9167, 90syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀))
92 flflp1 13172 . . . . . . . . . . . . . 14 (((𝑥 / 𝑀) ∈ ℝ ∧ (𝑥 / 𝑀) ∈ ℝ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9367, 67, 92syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) ≤ (𝑥 / 𝑀) ↔ (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1)))
9491, 93mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝑥 / 𝑀) < ((⌊‘(𝑥 / 𝑀)) + 1))
9567, 89, 85, 94ltsub1dd 11241 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (((⌊‘(𝑥 / 𝑀)) + 1) − 1))
9669recnd 10658 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (⌊‘(𝑥 / 𝑀)) ∈ ℂ)
9796, 73pncand 10987 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) + 1) − 1) = (⌊‘(𝑥 / 𝑀)))
9895, 97breqtrd 5056 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → ((𝑥 / 𝑀) − 1) < (⌊‘(𝑥 / 𝑀)))
9986, 69, 88, 98ltdiv1dd 12476 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → (((𝑥 / 𝑀) − 1) / 𝑥) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10084, 99eqbrtrrd 5054 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) < ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10157, 70, 100ltled 10777 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1 / 𝑀) − (1 / 𝑥)) ≤ ((⌊‘(𝑥 / 𝑀)) / 𝑥))
102 simpr 488 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → 𝑘 = 𝑥)
103102fvoveq1d 7157 . . . . . . . . 9 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (⌊‘(𝑘 / 𝑀)) = (⌊‘(𝑥 / 𝑀)))
104103, 102oveq12d 7153 . . . . . . . 8 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘(𝑘 / 𝑀)) / 𝑘) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
10559, 104, 32, 64fvmptd 6752 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘(𝑥 / 𝑀)) / 𝑥))
106101, 42, 1053brtr4d 5062 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝑀) − (1 / 𝑘)))‘𝑥) ≤ ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥))
10769, 67, 88, 91lediv1dd 12477 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ ((𝑥 / 𝑀) / 𝑥))
108107, 82breqtrd 5056 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘(𝑥 / 𝑀)) / 𝑥) ≤ (1 / 𝑀))
109105, 108eqbrtrd 5052 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ≤ (1 / 𝑀))
1109, 11, 47, 49, 58, 71, 106, 109climsqz 14989 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘)) ⇝ (1 / 𝑀))
11116mptex 6963 . . . . . 6 (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
112111a1i 11 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V)
1133zred 12075 . . . . . . . . . 10 (𝜑𝐽 ∈ ℝ)
114 1red 10631 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
115113, 114resubcld 11057 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
116115, 1nndivred 11679 . . . . . . . 8 (𝜑 → ((𝐽 − 1) / 𝑀) ∈ ℝ)
117116flcld 13163 . . . . . . 7 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℤ)
118117zcnd 12076 . . . . . 6 (𝜑 → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
119 divcnv 15200 . . . . . 6 ((⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
120118, 119syl 17 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) ⇝ 0)
12171recnd 10658 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
122 eqidd 2799 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)) = (𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘)))
123 oveq2 7143 . . . . . . . 8 (𝑘 = 𝑥 → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
124123adantl 485 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
125 ovexd 7170 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ V)
126122, 124, 32, 125fvmptd 6752 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) = ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥))
127118adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (⌊‘((𝐽 − 1) / 𝑀)) ∈ ℂ)
128127, 75, 55divcld 11405 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥) ∈ ℂ)
129126, 128eqeltrd 2890 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥) ∈ ℂ)
13096, 127, 75, 55divsubdird 11444 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
131 eqidd 2799 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
13260oveq1d 7150 . . . . . . . . 9 (𝑘 = 𝑥 → ((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) = ((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))))
133132, 61oveq12d 7153 . . . . . . . 8 (𝑘 = 𝑥 → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
134133adantl 485 . . . . . . 7 (((𝜑𝑥 ∈ ℕ) ∧ 𝑘 = 𝑥) → (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
135 ovexd 7170 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥) ∈ V)
136131, 134, 32, 135fvmptd 6752 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((⌊‘(𝑥 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑥))
13765, 126oveq12d 7153 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)) = (((⌊‘(𝑥 / 𝑀)) / 𝑥) − ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑥)))
138130, 136, 1373eqtr4d 2843 . . . . 5 ((𝜑𝑥 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))‘𝑥) = (((𝑘 ∈ ℕ ↦ ((⌊‘(𝑘 / 𝑀)) / 𝑘))‘𝑥) − ((𝑘 ∈ ℕ ↦ ((⌊‘((𝐽 − 1) / 𝑀)) / 𝑘))‘𝑥)))
1399, 11, 110, 112, 120, 121, 129, 138climsub 14982 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ ((1 / 𝑀) − 0))
140139, 46breqtrd 5056 . . 3 (𝜑 → (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
141 uzssz 12252 . . . . . . 7 (ℤ‘(𝐽 − 1)) ⊆ ℤ
142 resmpt 5872 . . . . . . 7 ((ℤ‘(𝐽 − 1)) ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
143141, 142ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) = (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
144143breq1i 5037 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1453, 11zsubcld 12080 . . . . . 6 (𝜑 → (𝐽 − 1) ∈ ℤ)
146 zex 11978 . . . . . . 7 ℤ ∈ V
147146mptex 6963 . . . . . 6 (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V
148 climres 14924 . . . . . 6 (((𝐽 − 1) ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
149145, 147, 148sylancl 589 . . . . 5 (𝜑 → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘(𝐽 − 1))) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
150144, 149bitr3id 288 . . . 4 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
1519reseq2i 5815 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1))
152151breq1i 5037 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀))
153 nnssz 11990 . . . . . . 7 ℕ ⊆ ℤ
154 resmpt 5872 . . . . . . 7 (ℕ ⊆ ℤ → ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)))
155153, 154ax-mp 5 . . . . . 6 ((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) = (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘))
156155breq1i 5037 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ ℕ) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
157 climres 14924 . . . . . 6 ((1 ∈ ℤ ∧ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ∈ V) → (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
15810, 147, 157mp2an 691 . . . . 5 (((𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ↾ (ℤ‘1)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
159152, 156, 1583bitr3i 304 . . . 4 ((𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℤ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
160150, 159syl6bbr 292 . . 3 (𝜑 → ((𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀) ↔ (𝑘 ∈ ℕ ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀)))
161140, 160mpbird 260 . 2 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ (((⌊‘(𝑘 / 𝑀)) − (⌊‘((𝐽 − 1) / 𝑀))) / 𝑘)) ⇝ (1 / 𝑀))
1628, 161eqbrtrd 5052 1 (𝜑 → (𝑘 ∈ (ℤ‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  cin 3880  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  cres 5521  cima 5522  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  cz 11969  cuz 12231  +crp 12377  ...cfz 12885  cfl 13155  chash 13686  cli 14833  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-dvds 15600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator