MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Visualization version   GIF version

Theorem tsmsf1o 23496
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b 𝐵 = (Base‘𝐺)
tsmsf1o.1 (𝜑𝐺 ∈ CMnd)
tsmsf1o.2 (𝜑𝐺 ∈ TopSp)
tsmsf1o.a (𝜑𝐴𝑉)
tsmsf1o.f (𝜑𝐹:𝐴𝐵)
tsmsf1o.s (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
tsmsf1o (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))

Proof of Theorem tsmsf1o
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11 (𝜑𝐻:𝐶1-1-onto𝐴)
2 f1opwfi 9300 . . . . . . . . . . 11 (𝐻:𝐶1-1-onto𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
31, 2syl 17 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
4 f1of 6784 . . . . . . . . . 10 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
53, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
6 eqid 2736 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))
76fmpt 7058 . . . . . . . . 9 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
85, 7sylibr 233 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin))
9 sseq1 3969 . . . . . . . . . . 11 (𝑦 = (𝐻𝑎) → (𝑦𝑧 ↔ (𝐻𝑎) ⊆ 𝑧))
109imbi1d 341 . . . . . . . . . 10 (𝑦 = (𝐻𝑎) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
1110ralbidv 3174 . . . . . . . . 9 (𝑦 = (𝐻𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
126, 11rexrnmptw 7045 . . . . . . . 8 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
138, 12syl 17 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
14 f1ofo 6791 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin))
15 forn 6759 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
163, 14, 153syl 18 . . . . . . . 8 (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
1716rexeqdv 3314 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
18 imaeq2 6009 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
1918cbvmptv 5218 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑏))
2019fmpt 7058 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
215, 20sylibr 233 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin))
22 sseq2 3970 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐻𝑎) ⊆ 𝑧 ↔ (𝐻𝑎) ⊆ (𝐻𝑏)))
23 reseq2 5932 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐻𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝐻𝑏)))
2423oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑧 = (𝐻𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻𝑏))))
2524eleq1d 2822 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢))
2622, 25imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑏) → (((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2719, 26ralrnmptw 7044 . . . . . . . . . . . 12 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2821, 27syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2916raleqdv 3313 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3028, 29bitr3d 280 . . . . . . . . . 10 (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3130adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
32 f1of1 6783 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
331, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐻:𝐶1-1𝐴)
3433ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1𝐴)
35 elfpw 9298 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎𝐶𝑎 ∈ Fin))
3635simplbi 498 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎𝐶)
3736ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎𝐶)
38 elfpw 9298 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏𝐶𝑏 ∈ Fin))
3938simplbi 498 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏𝐶)
4039adantl 482 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏𝐶)
41 f1imass 7211 . . . . . . . . . . . 12 ((𝐻:𝐶1-1𝐴 ∧ (𝑎𝐶𝑏𝐶)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
4234, 37, 40, 41syl12anc 835 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
43 tsmsf1o.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
44 eqid 2736 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ CMnd)
4645ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd)
47 elinel2 4156 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin)
4847adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin)
49 f1ores 6798 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐶1-1𝐴𝑏𝐶) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
5034, 40, 49syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
51 f1ofo 6791 . . . . . . . . . . . . . . . 16 ((𝐻𝑏):𝑏1-1-onto→(𝐻𝑏) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
53 fofi 9282 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ (𝐻𝑏):𝑏onto→(𝐻𝑏)) → (𝐻𝑏) ∈ Fin)
5448, 52, 53syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ∈ Fin)
55 tsmsf1o.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
5655ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴𝐵)
57 imassrn 6024 . . . . . . . . . . . . . . . 16 (𝐻𝑏) ⊆ ran 𝐻
581ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1-onto𝐴)
59 f1ofo 6791 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶onto𝐴)
60 forn 6759 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶onto𝐴 → ran 𝐻 = 𝐴)
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴)
6257, 61sseqtrid 3996 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ⊆ 𝐴)
6356, 62fssresd 6709 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)):(𝐻𝑏)⟶𝐵)
64 fvexd 6857 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (0g𝐺) ∈ V)
6563, 54, 64fdmfifsupp 9315 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)) finSupp (0g𝐺))
6643, 44, 46, 54, 63, 65, 50gsumf1o 19693 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))))
67 df-ima 5646 . . . . . . . . . . . . . . . . 17 (𝐻𝑏) = ran (𝐻𝑏)
6867eqimss2i 4003 . . . . . . . . . . . . . . . 16 ran (𝐻𝑏) ⊆ (𝐻𝑏)
69 cores 6201 . . . . . . . . . . . . . . . 16 (ran (𝐻𝑏) ⊆ (𝐻𝑏) → ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏)))
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏))
71 resco 6202 . . . . . . . . . . . . . . 15 ((𝐹𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻𝑏))
7270, 71eqtr4i 2767 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = ((𝐹𝐻) ↾ 𝑏)
7372oveq2i 7368 . . . . . . . . . . . . 13 (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏))
7466, 73eqtrdi 2792 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)))
7574eleq1d 2822 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))
7642, 75imbi12d 344 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ (𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7776ralbidva 3172 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7831, 77bitr3d 280 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7978rexbidva 3173 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8013, 17, 793bitr3d 308 . . . . . 6 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8180imbi2d 340 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8281ralbidv 3174 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8382anbi2d 629 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
84 eqid 2736 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
85 eqid 2736 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
86 tsmsf1o.2 . . . 4 (𝜑𝐺 ∈ TopSp)
87 tsmsf1o.a . . . 4 (𝜑𝐴𝑉)
8843, 84, 85, 45, 86, 87, 55eltsms 23484 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
89 eqid 2736 . . . 4 (𝒫 𝐶 ∩ Fin) = (𝒫 𝐶 ∩ Fin)
90 f1dmex 7889 . . . . 5 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
9133, 87, 90syl2anc 584 . . . 4 (𝜑𝐶 ∈ V)
92 f1of 6784 . . . . . 6 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
931, 92syl 17 . . . . 5 (𝜑𝐻:𝐶𝐴)
94 fco 6692 . . . . 5 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
9555, 93, 94syl2anc 584 . . . 4 (𝜑 → (𝐹𝐻):𝐶𝐵)
9643, 84, 89, 45, 86, 91, 95eltsms 23484 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝐻)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
9783, 88, 963bitr4d 310 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹𝐻))))
9897eqrdv 2734 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560  cmpt 5188  ran crn 5634  cres 5635  cima 5636  ccom 5637  wf 6492  1-1wf1 6493  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  TopOpenctopn 17303  0gc0g 17321   Σg cgsu 17322  CMndccmn 19562  TopSpctps 22281   tsums ctsu 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-cntz 19097  df-cmn 19564  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-topsp 22282  df-ntr 22371  df-nei 22449  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-tsms 23478
This theorem is referenced by:  esumf1o  32649
  Copyright terms: Public domain W3C validator