| Step | Hyp | Ref
| Expression |
| 1 | | tsmsf1o.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) |
| 2 | | f1opwfi 9379 |
. . . . . . . . . . 11
⊢ (𝐻:𝐶–1-1-onto→𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
| 3 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
| 4 | | f1of 6829 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
| 5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
| 6 | | eqid 2734 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) |
| 7 | 6 | fmpt 7111 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
| 8 | 5, 7 | sylibr 234 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin)) |
| 9 | | sseq1 3991 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐻 “ 𝑎) → (𝑦 ⊆ 𝑧 ↔ (𝐻 “ 𝑎) ⊆ 𝑧)) |
| 10 | 9 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐻 “ 𝑎) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 11 | 10 | ralbidv 3165 |
. . . . . . . . 9
⊢ (𝑦 = (𝐻 “ 𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 12 | 6, 11 | rexrnmptw 7096 |
. . . . . . . 8
⊢
(∀𝑎 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 13 | 8, 12 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 14 | | f1ofo 6836 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin)) |
| 15 | | forn 6804 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝒫 𝐴 ∩ Fin)) |
| 16 | 3, 14, 15 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝒫 𝐴 ∩ Fin)) |
| 17 | 16 | rexeqdv 3311 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 18 | | imaeq2 6056 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝐻 “ 𝑎) = (𝐻 “ 𝑏)) |
| 19 | 18 | cbvmptv 5237 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑏)) |
| 20 | 19 | fmpt 7111 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
| 21 | 5, 20 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻 “ 𝑏) ∈ (𝒫 𝐴 ∩ Fin)) |
| 22 | | sseq2 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐻 “ 𝑏) → ((𝐻 “ 𝑎) ⊆ 𝑧 ↔ (𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏))) |
| 23 | | reseq2 5974 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐻 “ 𝑏) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (𝐻 “ 𝑏))) |
| 24 | 23 | oveq2d 7430 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ 𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏)))) |
| 25 | 24 | eleq1d 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐻 “ 𝑏) → ((𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢)) |
| 26 | 22, 25 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐻 “ 𝑏) → (((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢))) |
| 27 | 19, 26 | ralrnmptw 7095 |
. . . . . . . . . . . 12
⊢
(∀𝑏 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑏) ∈ (𝒫 𝐴 ∩ Fin) →
(∀𝑧 ∈ ran
(𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢))) |
| 28 | 21, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢))) |
| 29 | 16 | raleqdv 3310 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 30 | 28, 29 | bitr3d 281 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
| 32 | | f1of1 6828 |
. . . . . . . . . . . . . 14
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶–1-1→𝐴) |
| 33 | 1, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻:𝐶–1-1→𝐴) |
| 34 | 33 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶–1-1→𝐴) |
| 35 | | elfpw 9377 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎 ⊆ 𝐶 ∧ 𝑎 ∈ Fin)) |
| 36 | 35 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎 ⊆ 𝐶) |
| 37 | 36 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎 ⊆ 𝐶) |
| 38 | | elfpw 9377 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏 ⊆ 𝐶 ∧ 𝑏 ∈ Fin)) |
| 39 | 38 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ⊆ 𝐶) |
| 40 | 39 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ⊆ 𝐶) |
| 41 | | f1imass 7267 |
. . . . . . . . . . . 12
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ (𝑎 ⊆ 𝐶 ∧ 𝑏 ⊆ 𝐶)) → ((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) ↔ 𝑎 ⊆ 𝑏)) |
| 42 | 34, 37, 40, 41 | syl12anc 836 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) ↔ 𝑎 ⊆ 𝑏)) |
| 43 | | tsmsf1o.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐺) |
| 44 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 45 | | tsmsf1o.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd) |
| 47 | | elinel2 4184 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin) |
| 49 | | f1ores 6843 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ 𝑏 ⊆ 𝐶) → (𝐻 ↾ 𝑏):𝑏–1-1-onto→(𝐻 “ 𝑏)) |
| 50 | 34, 40, 49 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 ↾ 𝑏):𝑏–1-1-onto→(𝐻 “ 𝑏)) |
| 51 | | f1ofo 6836 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ↾ 𝑏):𝑏–1-1-onto→(𝐻 “ 𝑏) → (𝐻 ↾ 𝑏):𝑏–onto→(𝐻 “ 𝑏)) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 ↾ 𝑏):𝑏–onto→(𝐻 “ 𝑏)) |
| 53 | | fofi 9334 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ Fin ∧ (𝐻 ↾ 𝑏):𝑏–onto→(𝐻 “ 𝑏)) → (𝐻 “ 𝑏) ∈ Fin) |
| 54 | 48, 52, 53 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 “ 𝑏) ∈ Fin) |
| 55 | | tsmsf1o.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴⟶𝐵) |
| 57 | | imassrn 6071 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 “ 𝑏) ⊆ ran 𝐻 |
| 58 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶–1-1-onto→𝐴) |
| 59 | | f1ofo 6836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶–onto→𝐴) |
| 60 | | forn 6804 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐶–onto→𝐴 → ran 𝐻 = 𝐴) |
| 61 | 58, 59, 60 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴) |
| 62 | 57, 61 | sseqtrid 4008 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 “ 𝑏) ⊆ 𝐴) |
| 63 | 56, 62 | fssresd 6756 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻 “ 𝑏)):(𝐻 “ 𝑏)⟶𝐵) |
| 64 | | fvexd 6902 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) →
(0g‘𝐺)
∈ V) |
| 65 | 63, 54, 64 | fdmfifsupp 9398 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻 “ 𝑏)) finSupp (0g‘𝐺)) |
| 66 | 43, 44, 46, 54, 63, 65, 50 | gsumf1o 19907 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)))) |
| 67 | | df-ima 5680 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 “ 𝑏) = ran (𝐻 ↾ 𝑏) |
| 68 | 67 | eqimss2i 4027 |
. . . . . . . . . . . . . . . 16
⊢ ran
(𝐻 ↾ 𝑏) ⊆ (𝐻 “ 𝑏) |
| 69 | | cores 6251 |
. . . . . . . . . . . . . . . 16
⊢ (ran
(𝐻 ↾ 𝑏) ⊆ (𝐻 “ 𝑏) → ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)) = (𝐹 ∘ (𝐻 ↾ 𝑏))) |
| 70 | 68, 69 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)) = (𝐹 ∘ (𝐻 ↾ 𝑏)) |
| 71 | | resco 6252 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∘ 𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻 ↾ 𝑏)) |
| 72 | 70, 71 | eqtr4i 2760 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)) = ((𝐹 ∘ 𝐻) ↾ 𝑏) |
| 73 | 72 | oveq2i 7425 |
. . . . . . . . . . . . 13
⊢ (𝐺 Σg
((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏))) = (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) |
| 74 | 66, 73 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) = (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏))) |
| 75 | 74 | eleq1d 2818 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢)) |
| 76 | 42, 75 | imbi12d 344 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ (𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
| 77 | 76 | ralbidva 3163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
| 78 | 31, 77 | bitr3d 281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
| 79 | 78 | rexbidva 3164 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
| 80 | 13, 17, 79 | 3bitr3d 309 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
| 81 | 80 | imbi2d 340 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) ↔ (𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢)))) |
| 82 | 81 | ralbidv 3165 |
. . . 4
⊢ (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢)))) |
| 83 | 82 | anbi2d 630 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))))) |
| 84 | | eqid 2734 |
. . . 4
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
| 85 | | eqid 2734 |
. . . 4
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
| 86 | | tsmsf1o.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) |
| 87 | | tsmsf1o.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 88 | 43, 84, 85, 45, 86, 87, 55 | eltsms 24106 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))))) |
| 89 | | eqid 2734 |
. . . 4
⊢
(𝒫 𝐶 ∩
Fin) = (𝒫 𝐶 ∩
Fin) |
| 90 | | f1dmex 7964 |
. . . . 5
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) |
| 91 | 33, 87, 90 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ V) |
| 92 | | f1of 6829 |
. . . . . 6
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶⟶𝐴) |
| 93 | 1, 92 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻:𝐶⟶𝐴) |
| 94 | | fco 6741 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐻:𝐶⟶𝐴) → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
| 95 | 55, 93, 94 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
| 96 | 43, 84, 89, 45, 86, 91, 95 | eltsms 24106 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹 ∘ 𝐻)) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))))) |
| 97 | 83, 88, 96 | 3bitr4d 311 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹 ∘ 𝐻)))) |
| 98 | 97 | eqrdv 2732 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹 ∘ 𝐻))) |