MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Visualization version   GIF version

Theorem tsmsf1o 22671
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b 𝐵 = (Base‘𝐺)
tsmsf1o.1 (𝜑𝐺 ∈ CMnd)
tsmsf1o.2 (𝜑𝐺 ∈ TopSp)
tsmsf1o.a (𝜑𝐴𝑉)
tsmsf1o.f (𝜑𝐹:𝐴𝐵)
tsmsf1o.s (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
tsmsf1o (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))

Proof of Theorem tsmsf1o
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11 (𝜑𝐻:𝐶1-1-onto𝐴)
2 f1opwfi 8817 . . . . . . . . . . 11 (𝐻:𝐶1-1-onto𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
31, 2syl 17 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
4 f1of 6612 . . . . . . . . . 10 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
53, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
6 eqid 2826 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))
76fmpt 6870 . . . . . . . . 9 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
85, 7sylibr 235 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin))
9 sseq1 3996 . . . . . . . . . . 11 (𝑦 = (𝐻𝑎) → (𝑦𝑧 ↔ (𝐻𝑎) ⊆ 𝑧))
109imbi1d 343 . . . . . . . . . 10 (𝑦 = (𝐻𝑎) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
1110ralbidv 3202 . . . . . . . . 9 (𝑦 = (𝐻𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
126, 11rexrnmptw 6857 . . . . . . . 8 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
138, 12syl 17 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
14 f1ofo 6619 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin))
15 forn 6590 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
163, 14, 153syl 18 . . . . . . . 8 (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
1716rexeqdv 3422 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
18 imaeq2 5923 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
1918cbvmptv 5166 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑏))
2019fmpt 6870 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
215, 20sylibr 235 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin))
22 sseq2 3997 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐻𝑎) ⊆ 𝑧 ↔ (𝐻𝑎) ⊆ (𝐻𝑏)))
23 reseq2 5847 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐻𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝐻𝑏)))
2423oveq2d 7164 . . . . . . . . . . . . . . 15 (𝑧 = (𝐻𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻𝑏))))
2524eleq1d 2902 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢))
2622, 25imbi12d 346 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑏) → (((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2719, 26ralrnmptw 6856 . . . . . . . . . . . 12 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2821, 27syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2916raleqdv 3421 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3028, 29bitr3d 282 . . . . . . . . . 10 (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3130adantr 481 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
32 f1of1 6611 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
331, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐻:𝐶1-1𝐴)
3433ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1𝐴)
35 elfpw 8815 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎𝐶𝑎 ∈ Fin))
3635simplbi 498 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎𝐶)
3736ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎𝐶)
38 elfpw 8815 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏𝐶𝑏 ∈ Fin))
3938simplbi 498 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏𝐶)
4039adantl 482 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏𝐶)
41 f1imass 7016 . . . . . . . . . . . 12 ((𝐻:𝐶1-1𝐴 ∧ (𝑎𝐶𝑏𝐶)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
4234, 37, 40, 41syl12anc 834 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
43 tsmsf1o.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
44 eqid 2826 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ CMnd)
4645ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd)
47 elinel2 4177 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin)
4847adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin)
49 f1ores 6626 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐶1-1𝐴𝑏𝐶) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
5034, 40, 49syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
51 f1ofo 6619 . . . . . . . . . . . . . . . 16 ((𝐻𝑏):𝑏1-1-onto→(𝐻𝑏) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
53 fofi 8799 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ (𝐻𝑏):𝑏onto→(𝐻𝑏)) → (𝐻𝑏) ∈ Fin)
5448, 52, 53syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ∈ Fin)
55 tsmsf1o.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
5655ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴𝐵)
57 imassrn 5938 . . . . . . . . . . . . . . . 16 (𝐻𝑏) ⊆ ran 𝐻
581ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1-onto𝐴)
59 f1ofo 6619 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶onto𝐴)
60 forn 6590 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶onto𝐴 → ran 𝐻 = 𝐴)
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴)
6257, 61sseqtrid 4023 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ⊆ 𝐴)
6356, 62fssresd 6542 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)):(𝐻𝑏)⟶𝐵)
64 fvexd 6682 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (0g𝐺) ∈ V)
6563, 54, 64fdmfifsupp 8832 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)) finSupp (0g𝐺))
6643, 44, 46, 54, 63, 65, 50gsumf1o 18956 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))))
67 df-ima 5567 . . . . . . . . . . . . . . . . 17 (𝐻𝑏) = ran (𝐻𝑏)
6867eqimss2i 4030 . . . . . . . . . . . . . . . 16 ran (𝐻𝑏) ⊆ (𝐻𝑏)
69 cores 6100 . . . . . . . . . . . . . . . 16 (ran (𝐻𝑏) ⊆ (𝐻𝑏) → ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏)))
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏))
71 resco 6101 . . . . . . . . . . . . . . 15 ((𝐹𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻𝑏))
7270, 71eqtr4i 2852 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = ((𝐹𝐻) ↾ 𝑏)
7372oveq2i 7159 . . . . . . . . . . . . 13 (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏))
7466, 73syl6eq 2877 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)))
7574eleq1d 2902 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))
7642, 75imbi12d 346 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ (𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7776ralbidva 3201 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7831, 77bitr3d 282 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7978rexbidva 3301 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8013, 17, 793bitr3d 310 . . . . . 6 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8180imbi2d 342 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8281ralbidv 3202 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8382anbi2d 628 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
84 eqid 2826 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
85 eqid 2826 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
86 tsmsf1o.2 . . . 4 (𝜑𝐺 ∈ TopSp)
87 tsmsf1o.a . . . 4 (𝜑𝐴𝑉)
8843, 84, 85, 45, 86, 87, 55eltsms 22659 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
89 eqid 2826 . . . 4 (𝒫 𝐶 ∩ Fin) = (𝒫 𝐶 ∩ Fin)
90 f1dmex 7649 . . . . 5 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
9133, 87, 90syl2anc 584 . . . 4 (𝜑𝐶 ∈ V)
92 f1of 6612 . . . . . 6 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
931, 92syl 17 . . . . 5 (𝜑𝐻:𝐶𝐴)
94 fco 6528 . . . . 5 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
9555, 93, 94syl2anc 584 . . . 4 (𝜑 → (𝐹𝐻):𝐶𝐵)
9643, 84, 89, 45, 86, 91, 95eltsms 22659 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝐻)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
9783, 88, 963bitr4d 312 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹𝐻))))
9897eqrdv 2824 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3143  wrex 3144  Vcvv 3500  cin 3939  wss 3940  𝒫 cpw 4542  cmpt 5143  ran crn 5555  cres 5556  cima 5557  ccom 5558  wf 6348  1-1wf1 6349  ontowfo 6350  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  Fincfn 8498  Basecbs 16473  TopOpenctopn 16685  0gc0g 16703   Σg cgsu 16704  CMndccmn 18826  TopSpctps 21459   tsums ctsu 22652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-map 8398  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-seq 13360  df-hash 13681  df-0g 16705  df-gsum 16706  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-cntz 18377  df-cmn 18828  df-fbas 20461  df-fg 20462  df-top 21421  df-topon 21438  df-topsp 21460  df-ntr 21547  df-nei 21625  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-tsms 22653
This theorem is referenced by:  esumf1o  31198
  Copyright terms: Public domain W3C validator