MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Visualization version   GIF version

Theorem tsmsf1o 23204
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b 𝐵 = (Base‘𝐺)
tsmsf1o.1 (𝜑𝐺 ∈ CMnd)
tsmsf1o.2 (𝜑𝐺 ∈ TopSp)
tsmsf1o.a (𝜑𝐴𝑉)
tsmsf1o.f (𝜑𝐹:𝐴𝐵)
tsmsf1o.s (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
tsmsf1o (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))

Proof of Theorem tsmsf1o
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11 (𝜑𝐻:𝐶1-1-onto𝐴)
2 f1opwfi 9053 . . . . . . . . . . 11 (𝐻:𝐶1-1-onto𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
31, 2syl 17 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
4 f1of 6700 . . . . . . . . . 10 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
53, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
6 eqid 2738 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))
76fmpt 6966 . . . . . . . . 9 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
85, 7sylibr 233 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin))
9 sseq1 3942 . . . . . . . . . . 11 (𝑦 = (𝐻𝑎) → (𝑦𝑧 ↔ (𝐻𝑎) ⊆ 𝑧))
109imbi1d 341 . . . . . . . . . 10 (𝑦 = (𝐻𝑎) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
1110ralbidv 3120 . . . . . . . . 9 (𝑦 = (𝐻𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
126, 11rexrnmptw 6953 . . . . . . . 8 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
138, 12syl 17 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
14 f1ofo 6707 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin))
15 forn 6675 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
163, 14, 153syl 18 . . . . . . . 8 (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
1716rexeqdv 3340 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
18 imaeq2 5954 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
1918cbvmptv 5183 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑏))
2019fmpt 6966 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
215, 20sylibr 233 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin))
22 sseq2 3943 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐻𝑎) ⊆ 𝑧 ↔ (𝐻𝑎) ⊆ (𝐻𝑏)))
23 reseq2 5875 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐻𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝐻𝑏)))
2423oveq2d 7271 . . . . . . . . . . . . . . 15 (𝑧 = (𝐻𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻𝑏))))
2524eleq1d 2823 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢))
2622, 25imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑏) → (((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2719, 26ralrnmptw 6952 . . . . . . . . . . . 12 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2821, 27syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2916raleqdv 3339 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3028, 29bitr3d 280 . . . . . . . . . 10 (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
32 f1of1 6699 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
331, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐻:𝐶1-1𝐴)
3433ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1𝐴)
35 elfpw 9051 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎𝐶𝑎 ∈ Fin))
3635simplbi 497 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎𝐶)
3736ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎𝐶)
38 elfpw 9051 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏𝐶𝑏 ∈ Fin))
3938simplbi 497 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏𝐶)
4039adantl 481 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏𝐶)
41 f1imass 7118 . . . . . . . . . . . 12 ((𝐻:𝐶1-1𝐴 ∧ (𝑎𝐶𝑏𝐶)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
4234, 37, 40, 41syl12anc 833 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
43 tsmsf1o.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
44 eqid 2738 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ CMnd)
4645ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd)
47 elinel2 4126 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin)
4847adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin)
49 f1ores 6714 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐶1-1𝐴𝑏𝐶) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
5034, 40, 49syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
51 f1ofo 6707 . . . . . . . . . . . . . . . 16 ((𝐻𝑏):𝑏1-1-onto→(𝐻𝑏) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
53 fofi 9035 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ (𝐻𝑏):𝑏onto→(𝐻𝑏)) → (𝐻𝑏) ∈ Fin)
5448, 52, 53syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ∈ Fin)
55 tsmsf1o.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
5655ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴𝐵)
57 imassrn 5969 . . . . . . . . . . . . . . . 16 (𝐻𝑏) ⊆ ran 𝐻
581ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1-onto𝐴)
59 f1ofo 6707 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶onto𝐴)
60 forn 6675 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶onto𝐴 → ran 𝐻 = 𝐴)
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴)
6257, 61sseqtrid 3969 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ⊆ 𝐴)
6356, 62fssresd 6625 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)):(𝐻𝑏)⟶𝐵)
64 fvexd 6771 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (0g𝐺) ∈ V)
6563, 54, 64fdmfifsupp 9068 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)) finSupp (0g𝐺))
6643, 44, 46, 54, 63, 65, 50gsumf1o 19432 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))))
67 df-ima 5593 . . . . . . . . . . . . . . . . 17 (𝐻𝑏) = ran (𝐻𝑏)
6867eqimss2i 3976 . . . . . . . . . . . . . . . 16 ran (𝐻𝑏) ⊆ (𝐻𝑏)
69 cores 6142 . . . . . . . . . . . . . . . 16 (ran (𝐻𝑏) ⊆ (𝐻𝑏) → ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏)))
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏))
71 resco 6143 . . . . . . . . . . . . . . 15 ((𝐹𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻𝑏))
7270, 71eqtr4i 2769 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = ((𝐹𝐻) ↾ 𝑏)
7372oveq2i 7266 . . . . . . . . . . . . 13 (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏))
7466, 73eqtrdi 2795 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)))
7574eleq1d 2823 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))
7642, 75imbi12d 344 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ (𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7776ralbidva 3119 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7831, 77bitr3d 280 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7978rexbidva 3224 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8013, 17, 793bitr3d 308 . . . . . 6 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8180imbi2d 340 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8281ralbidv 3120 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8382anbi2d 628 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
84 eqid 2738 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
85 eqid 2738 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
86 tsmsf1o.2 . . . 4 (𝜑𝐺 ∈ TopSp)
87 tsmsf1o.a . . . 4 (𝜑𝐴𝑉)
8843, 84, 85, 45, 86, 87, 55eltsms 23192 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
89 eqid 2738 . . . 4 (𝒫 𝐶 ∩ Fin) = (𝒫 𝐶 ∩ Fin)
90 f1dmex 7773 . . . . 5 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
9133, 87, 90syl2anc 583 . . . 4 (𝜑𝐶 ∈ V)
92 f1of 6700 . . . . . 6 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
931, 92syl 17 . . . . 5 (𝜑𝐻:𝐶𝐴)
94 fco 6608 . . . . 5 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
9555, 93, 94syl2anc 583 . . . 4 (𝜑 → (𝐹𝐻):𝐶𝐵)
9643, 84, 89, 45, 86, 91, 95eltsms 23192 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝐻)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
9783, 88, 963bitr4d 310 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹𝐻))))
9897eqrdv 2736 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883  𝒫 cpw 4530  cmpt 5153  ran crn 5581  cres 5582  cima 5583  ccom 5584  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  Basecbs 16840  TopOpenctopn 17049  0gc0g 17067   Σg cgsu 17068  CMndccmn 19301  TopSpctps 21989   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-ntr 22079  df-nei 22157  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186
This theorem is referenced by:  esumf1o  31918
  Copyright terms: Public domain W3C validator