MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Visualization version   GIF version

Theorem tsmsf1o 24088
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b 𝐵 = (Base‘𝐺)
tsmsf1o.1 (𝜑𝐺 ∈ CMnd)
tsmsf1o.2 (𝜑𝐺 ∈ TopSp)
tsmsf1o.a (𝜑𝐴𝑉)
tsmsf1o.f (𝜑𝐹:𝐴𝐵)
tsmsf1o.s (𝜑𝐻:𝐶1-1-onto𝐴)
Assertion
Ref Expression
tsmsf1o (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))

Proof of Theorem tsmsf1o
Dummy variables 𝑎 𝑏 𝑢 𝑦 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11 (𝜑𝐻:𝐶1-1-onto𝐴)
2 f1opwfi 9373 . . . . . . . . . . 11 (𝐻:𝐶1-1-onto𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
31, 2syl 17 . . . . . . . . . 10 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin))
4 f1of 6823 . . . . . . . . . 10 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
53, 4syl 17 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
6 eqid 2736 . . . . . . . . . 10 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))
76fmpt 7105 . . . . . . . . 9 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
85, 7sylibr 234 . . . . . . . 8 (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin))
9 sseq1 3989 . . . . . . . . . . 11 (𝑦 = (𝐻𝑎) → (𝑦𝑧 ↔ (𝐻𝑎) ⊆ 𝑧))
109imbi1d 341 . . . . . . . . . 10 (𝑦 = (𝐻𝑎) → ((𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
1110ralbidv 3164 . . . . . . . . 9 (𝑦 = (𝐻𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
126, 11rexrnmptw 7090 . . . . . . . 8 (∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
138, 12syl 17 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
14 f1ofo 6830 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin))
15 forn 6798 . . . . . . . . 9 ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
163, 14, 153syl 18 . . . . . . . 8 (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝒫 𝐴 ∩ Fin))
1716rexeqdv 3310 . . . . . . 7 (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
18 imaeq2 6048 . . . . . . . . . . . . . . 15 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
1918cbvmptv 5230 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑏))
2019fmpt 7105 . . . . . . . . . . . . 13 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin))
215, 20sylibr 234 . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin))
22 sseq2 3990 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐻𝑎) ⊆ 𝑧 ↔ (𝐻𝑎) ⊆ (𝐻𝑏)))
23 reseq2 5966 . . . . . . . . . . . . . . . 16 (𝑧 = (𝐻𝑏) → (𝐹𝑧) = (𝐹 ↾ (𝐻𝑏)))
2423oveq2d 7426 . . . . . . . . . . . . . . 15 (𝑧 = (𝐻𝑏) → (𝐺 Σg (𝐹𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻𝑏))))
2524eleq1d 2820 . . . . . . . . . . . . . 14 (𝑧 = (𝐻𝑏) → ((𝐺 Σg (𝐹𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢))
2622, 25imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = (𝐻𝑏) → (((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2719, 26ralrnmptw 7089 . . . . . . . . . . . 12 (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻𝑏) ∈ (𝒫 𝐴 ∩ Fin) → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2821, 27syl 17 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢)))
2916raleqdv 3309 . . . . . . . . . . 11 (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻𝑎))((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3028, 29bitr3d 281 . . . . . . . . . 10 (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
3130adantr 480 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))
32 f1of1 6822 . . . . . . . . . . . . . 14 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶1-1𝐴)
331, 32syl 17 . . . . . . . . . . . . 13 (𝜑𝐻:𝐶1-1𝐴)
3433ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1𝐴)
35 elfpw 9371 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎𝐶𝑎 ∈ Fin))
3635simplbi 497 . . . . . . . . . . . . 13 (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎𝐶)
3736ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎𝐶)
38 elfpw 9371 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏𝐶𝑏 ∈ Fin))
3938simplbi 497 . . . . . . . . . . . . 13 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏𝐶)
4039adantl 481 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏𝐶)
41 f1imass 7262 . . . . . . . . . . . 12 ((𝐻:𝐶1-1𝐴 ∧ (𝑎𝐶𝑏𝐶)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
4234, 37, 40, 41syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻𝑎) ⊆ (𝐻𝑏) ↔ 𝑎𝑏))
43 tsmsf1o.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐺)
44 eqid 2736 . . . . . . . . . . . . . 14 (0g𝐺) = (0g𝐺)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15 (𝜑𝐺 ∈ CMnd)
4645ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd)
47 elinel2 4182 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin)
4847adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin)
49 f1ores 6837 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐶1-1𝐴𝑏𝐶) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
5034, 40, 49syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏1-1-onto→(𝐻𝑏))
51 f1ofo 6830 . . . . . . . . . . . . . . . 16 ((𝐻𝑏):𝑏1-1-onto→(𝐻𝑏) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
5250, 51syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏):𝑏onto→(𝐻𝑏))
53 fofi 9328 . . . . . . . . . . . . . . 15 ((𝑏 ∈ Fin ∧ (𝐻𝑏):𝑏onto→(𝐻𝑏)) → (𝐻𝑏) ∈ Fin)
5448, 52, 53syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ∈ Fin)
55 tsmsf1o.f . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴𝐵)
5655ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴𝐵)
57 imassrn 6063 . . . . . . . . . . . . . . . 16 (𝐻𝑏) ⊆ ran 𝐻
581ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶1-1-onto𝐴)
59 f1ofo 6830 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶onto𝐴)
60 forn 6798 . . . . . . . . . . . . . . . . 17 (𝐻:𝐶onto𝐴 → ran 𝐻 = 𝐴)
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴)
6257, 61sseqtrid 4006 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻𝑏) ⊆ 𝐴)
6356, 62fssresd 6750 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)):(𝐻𝑏)⟶𝐵)
64 fvexd 6896 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (0g𝐺) ∈ V)
6563, 54, 64fdmfifsupp 9392 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻𝑏)) finSupp (0g𝐺))
6643, 44, 46, 54, 63, 65, 50gsumf1o 19902 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))))
67 df-ima 5672 . . . . . . . . . . . . . . . . 17 (𝐻𝑏) = ran (𝐻𝑏)
6867eqimss2i 4025 . . . . . . . . . . . . . . . 16 ran (𝐻𝑏) ⊆ (𝐻𝑏)
69 cores 6243 . . . . . . . . . . . . . . . 16 (ran (𝐻𝑏) ⊆ (𝐻𝑏) → ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏)))
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = (𝐹 ∘ (𝐻𝑏))
71 resco 6244 . . . . . . . . . . . . . . 15 ((𝐹𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻𝑏))
7270, 71eqtr4i 2762 . . . . . . . . . . . . . 14 ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏)) = ((𝐹𝐻) ↾ 𝑏)
7372oveq2i 7421 . . . . . . . . . . . . 13 (𝐺 Σg ((𝐹 ↾ (𝐻𝑏)) ∘ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏))
7466, 73eqtrdi 2787 . . . . . . . . . . . 12 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) = (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)))
7574eleq1d 2820 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))
7642, 75imbi12d 344 . . . . . . . . . 10 (((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ (𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7776ralbidva 3162 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻𝑎) ⊆ (𝐻𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7831, 77bitr3d 281 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
7978rexbidva 3163 . . . . . . 7 (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8013, 17, 793bitr3d 309 . . . . . 6 (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))
8180imbi2d 340 . . . . 5 (𝜑 → ((𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ (𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8281ralbidv 3164 . . . 4 (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢))))
8382anbi2d 630 . . 3 (𝜑 → ((𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢))) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
84 eqid 2736 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
85 eqid 2736 . . . 4 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
86 tsmsf1o.2 . . . 4 (𝜑𝐺 ∈ TopSp)
87 tsmsf1o.a . . . 4 (𝜑𝐴𝑉)
8843, 84, 85, 45, 86, 87, 55eltsms 24076 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦𝑧 → (𝐺 Σg (𝐹𝑧)) ∈ 𝑢)))))
89 eqid 2736 . . . 4 (𝒫 𝐶 ∩ Fin) = (𝒫 𝐶 ∩ Fin)
90 f1dmex 7960 . . . . 5 ((𝐻:𝐶1-1𝐴𝐴𝑉) → 𝐶 ∈ V)
9133, 87, 90syl2anc 584 . . . 4 (𝜑𝐶 ∈ V)
92 f1of 6823 . . . . . 6 (𝐻:𝐶1-1-onto𝐴𝐻:𝐶𝐴)
931, 92syl 17 . . . . 5 (𝜑𝐻:𝐶𝐴)
94 fco 6735 . . . . 5 ((𝐹:𝐴𝐵𝐻:𝐶𝐴) → (𝐹𝐻):𝐶𝐵)
9555, 93, 94syl2anc 584 . . . 4 (𝜑 → (𝐹𝐻):𝐶𝐵)
9643, 84, 89, 45, 86, 91, 95eltsms 24076 . . 3 (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹𝐻)) ↔ (𝑥𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎𝑏 → (𝐺 Σg ((𝐹𝐻) ↾ 𝑏)) ∈ 𝑢)))))
9783, 88, 963bitr4d 311 . 2 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹𝐻))))
9897eqrdv 2734 1 (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cin 3930  wss 3931  𝒫 cpw 4580  cmpt 5206  ran crn 5660  cres 5661  cima 5662  ccom 5663  wf 6532  1-1wf1 6533  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  Basecbs 17233  TopOpenctopn 17440  0gc0g 17458   Σg cgsu 17459  CMndccmn 19766  TopSpctps 22875   tsums ctsu 24069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-cntz 19305  df-cmn 19768  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-ntr 22963  df-nei 23041  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070
This theorem is referenced by:  esumf1o  34086
  Copyright terms: Public domain W3C validator