Step | Hyp | Ref
| Expression |
1 | | tsmsf1o.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻:𝐶–1-1-onto→𝐴) |
2 | | f1opwfi 9053 |
. . . . . . . . . . 11
⊢ (𝐻:𝐶–1-1-onto→𝐴 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
3 | 1, 2 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
4 | | f1of 6700 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
6 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) |
7 | 6 | fmpt 6966 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
8 | 5, 7 | sylibr 233 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑎 ∈ (𝒫 𝐶 ∩ Fin)(𝐻 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin)) |
9 | | sseq1 3942 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐻 “ 𝑎) → (𝑦 ⊆ 𝑧 ↔ (𝐻 “ 𝑎) ⊆ 𝑧)) |
10 | 9 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐻 “ 𝑎) → ((𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
11 | 10 | ralbidv 3120 |
. . . . . . . . 9
⊢ (𝑦 = (𝐻 “ 𝑎) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
12 | 6, 11 | rexrnmptw 6953 |
. . . . . . . 8
⊢
(∀𝑎 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑎) ∈ (𝒫 𝐴 ∩ Fin) → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
13 | 8, 12 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
14 | | f1ofo 6707 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–1-1-onto→(𝒫 𝐴 ∩ Fin) → (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin)) |
15 | | forn 6675 |
. . . . . . . . 9
⊢ ((𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)–onto→(𝒫 𝐴 ∩ Fin) → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝒫 𝐴 ∩ Fin)) |
16 | 3, 14, 15 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝒫 𝐴 ∩ Fin)) |
17 | 16 | rexeqdv 3340 |
. . . . . . 7
⊢ (𝜑 → (∃𝑦 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
18 | | imaeq2 5954 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑏 → (𝐻 “ 𝑎) = (𝐻 “ 𝑏)) |
19 | 18 | cbvmptv 5183 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)) = (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑏)) |
20 | 19 | fmpt 6966 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑏) ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎)):(𝒫 𝐶 ∩ Fin)⟶(𝒫 𝐴 ∩ Fin)) |
21 | 5, 20 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝐻 “ 𝑏) ∈ (𝒫 𝐴 ∩ Fin)) |
22 | | sseq2 3943 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐻 “ 𝑏) → ((𝐻 “ 𝑎) ⊆ 𝑧 ↔ (𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏))) |
23 | | reseq2 5875 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = (𝐻 “ 𝑏) → (𝐹 ↾ 𝑧) = (𝐹 ↾ (𝐻 “ 𝑏))) |
24 | 23 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ 𝑧)) = (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏)))) |
25 | 24 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐻 “ 𝑏) → ((𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢 ↔ (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢)) |
26 | 22, 25 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐻 “ 𝑏) → (((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢))) |
27 | 19, 26 | ralrnmptw 6952 |
. . . . . . . . . . . 12
⊢
(∀𝑏 ∈
(𝒫 𝐶 ∩
Fin)(𝐻 “ 𝑏) ∈ (𝒫 𝐴 ∩ Fin) →
(∀𝑧 ∈ ran
(𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢))) |
28 | 21, 27 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢))) |
29 | 16 | raleqdv 3339 |
. . . . . . . . . . 11
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↦ (𝐻 “ 𝑎))((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
30 | 28, 29 | bitr3d 280 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ ∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) |
32 | | f1of1 6699 |
. . . . . . . . . . . . . 14
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶–1-1→𝐴) |
33 | 1, 32 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻:𝐶–1-1→𝐴) |
34 | 33 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶–1-1→𝐴) |
35 | | elfpw 9051 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑎 ⊆ 𝐶 ∧ 𝑎 ∈ Fin)) |
36 | 35 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ (𝒫 𝐶 ∩ Fin) → 𝑎 ⊆ 𝐶) |
37 | 36 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑎 ⊆ 𝐶) |
38 | | elfpw 9051 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ (𝒫 𝐶 ∩ Fin) ↔ (𝑏 ⊆ 𝐶 ∧ 𝑏 ∈ Fin)) |
39 | 38 | simplbi 497 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ⊆ 𝐶) |
40 | 39 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ⊆ 𝐶) |
41 | | f1imass 7118 |
. . . . . . . . . . . 12
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ (𝑎 ⊆ 𝐶 ∧ 𝑏 ⊆ 𝐶)) → ((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) ↔ 𝑎 ⊆ 𝑏)) |
42 | 34, 37, 40, 41 | syl12anc 833 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) ↔ 𝑎 ⊆ 𝑏)) |
43 | | tsmsf1o.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐺) |
44 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0g‘𝐺) = (0g‘𝐺) |
45 | | tsmsf1o.1 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺 ∈ CMnd) |
46 | 45 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐺 ∈ CMnd) |
47 | | elinel2 4126 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∈ (𝒫 𝐶 ∩ Fin) → 𝑏 ∈ Fin) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝑏 ∈ Fin) |
49 | | f1ores 6714 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ 𝑏 ⊆ 𝐶) → (𝐻 ↾ 𝑏):𝑏–1-1-onto→(𝐻 “ 𝑏)) |
50 | 34, 40, 49 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 ↾ 𝑏):𝑏–1-1-onto→(𝐻 “ 𝑏)) |
51 | | f1ofo 6707 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ↾ 𝑏):𝑏–1-1-onto→(𝐻 “ 𝑏) → (𝐻 ↾ 𝑏):𝑏–onto→(𝐻 “ 𝑏)) |
52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 ↾ 𝑏):𝑏–onto→(𝐻 “ 𝑏)) |
53 | | fofi 9035 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ Fin ∧ (𝐻 ↾ 𝑏):𝑏–onto→(𝐻 “ 𝑏)) → (𝐻 “ 𝑏) ∈ Fin) |
54 | 48, 52, 53 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 “ 𝑏) ∈ Fin) |
55 | | tsmsf1o.f |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
56 | 55 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐹:𝐴⟶𝐵) |
57 | | imassrn 5969 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻 “ 𝑏) ⊆ ran 𝐻 |
58 | 1 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → 𝐻:𝐶–1-1-onto→𝐴) |
59 | | f1ofo 6707 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶–onto→𝐴) |
60 | | forn 6675 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:𝐶–onto→𝐴 → ran 𝐻 = 𝐴) |
61 | 58, 59, 60 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ran 𝐻 = 𝐴) |
62 | 57, 61 | sseqtrid 3969 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐻 “ 𝑏) ⊆ 𝐴) |
63 | 56, 62 | fssresd 6625 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻 “ 𝑏)):(𝐻 “ 𝑏)⟶𝐵) |
64 | | fvexd 6771 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) →
(0g‘𝐺)
∈ V) |
65 | 63, 54, 64 | fdmfifsupp 9068 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐹 ↾ (𝐻 “ 𝑏)) finSupp (0g‘𝐺)) |
66 | 43, 44, 46, 54, 63, 65, 50 | gsumf1o 19432 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) = (𝐺 Σg ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)))) |
67 | | df-ima 5593 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻 “ 𝑏) = ran (𝐻 ↾ 𝑏) |
68 | 67 | eqimss2i 3976 |
. . . . . . . . . . . . . . . 16
⊢ ran
(𝐻 ↾ 𝑏) ⊆ (𝐻 “ 𝑏) |
69 | | cores 6142 |
. . . . . . . . . . . . . . . 16
⊢ (ran
(𝐻 ↾ 𝑏) ⊆ (𝐻 “ 𝑏) → ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)) = (𝐹 ∘ (𝐻 ↾ 𝑏))) |
70 | 68, 69 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)) = (𝐹 ∘ (𝐻 ↾ 𝑏)) |
71 | | resco 6143 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∘ 𝐻) ↾ 𝑏) = (𝐹 ∘ (𝐻 ↾ 𝑏)) |
72 | 70, 71 | eqtr4i 2769 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏)) = ((𝐹 ∘ 𝐻) ↾ 𝑏) |
73 | 72 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢ (𝐺 Σg
((𝐹 ↾ (𝐻 “ 𝑏)) ∘ (𝐻 ↾ 𝑏))) = (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) |
74 | 66, 73 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) = (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏))) |
75 | 74 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → ((𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢 ↔ (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢)) |
76 | 42, 75 | imbi12d 344 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝐶 ∩ Fin)) → (((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ (𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
77 | 76 | ralbidva 3119 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)((𝐻 “ 𝑎) ⊆ (𝐻 “ 𝑏) → (𝐺 Σg (𝐹 ↾ (𝐻 “ 𝑏))) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
78 | 31, 77 | bitr3d 280 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐶 ∩ Fin)) → (∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
79 | 78 | rexbidva 3224 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)((𝐻 “ 𝑎) ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
80 | 13, 17, 79 | 3bitr3d 308 |
. . . . . 6
⊢ (𝜑 → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢) ↔ ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))) |
81 | 80 | imbi2d 340 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) ↔ (𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢)))) |
82 | 81 | ralbidv 3120 |
. . . 4
⊢ (𝜑 → (∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢)))) |
83 | 82 | anbi2d 628 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))))) |
84 | | eqid 2738 |
. . . 4
⊢
(TopOpen‘𝐺) =
(TopOpen‘𝐺) |
85 | | eqid 2738 |
. . . 4
⊢
(𝒫 𝐴 ∩
Fin) = (𝒫 𝐴 ∩
Fin) |
86 | | tsmsf1o.2 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TopSp) |
87 | | tsmsf1o.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
88 | 43, 84, 85, 45, 86, 87, 55 | eltsms 23192 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)∀𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 ⊆ 𝑧 → (𝐺 Σg (𝐹 ↾ 𝑧)) ∈ 𝑢))))) |
89 | | eqid 2738 |
. . . 4
⊢
(𝒫 𝐶 ∩
Fin) = (𝒫 𝐶 ∩
Fin) |
90 | | f1dmex 7773 |
. . . . 5
⊢ ((𝐻:𝐶–1-1→𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐶 ∈ V) |
91 | 33, 87, 90 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ V) |
92 | | f1of 6700 |
. . . . . 6
⊢ (𝐻:𝐶–1-1-onto→𝐴 → 𝐻:𝐶⟶𝐴) |
93 | 1, 92 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐻:𝐶⟶𝐴) |
94 | | fco 6608 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐻:𝐶⟶𝐴) → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
95 | 55, 93, 94 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐹 ∘ 𝐻):𝐶⟶𝐵) |
96 | 43, 84, 89, 45, 86, 91, 95 | eltsms 23192 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums (𝐹 ∘ 𝐻)) ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥 ∈ 𝑢 → ∃𝑎 ∈ (𝒫 𝐶 ∩ Fin)∀𝑏 ∈ (𝒫 𝐶 ∩ Fin)(𝑎 ⊆ 𝑏 → (𝐺 Σg ((𝐹 ∘ 𝐻) ↾ 𝑏)) ∈ 𝑢))))) |
97 | 83, 88, 96 | 3bitr4d 310 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑥 ∈ (𝐺 tsums (𝐹 ∘ 𝐻)))) |
98 | 97 | eqrdv 2736 |
1
⊢ (𝜑 → (𝐺 tsums 𝐹) = (𝐺 tsums (𝐹 ∘ 𝐻))) |