| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1steq | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| op1steq | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5681 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
| 2 | 1 | sseli 3959 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
| 3 | eqid 2734 | . . . . . 6 ⊢ (2nd ‘𝐴) = (2nd ‘𝐴) | |
| 4 | eqopi 8032 | . . . . . 6 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = (2nd ‘𝐴))) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | mpanr2 704 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) |
| 6 | fvex 6899 | . . . . . 6 ⊢ (2nd ‘𝐴) ∈ V | |
| 7 | opeq2 4854 | . . . . . . 7 ⊢ (𝑥 = (2nd ‘𝐴) → 〈𝐵, 𝑥〉 = 〈𝐵, (2nd ‘𝐴)〉) | |
| 8 | 7 | eqeq2d 2745 | . . . . . 6 ⊢ (𝑥 = (2nd ‘𝐴) → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈𝐵, (2nd ‘𝐴)〉)) |
| 9 | 6, 8 | spcev 3589 | . . . . 5 ⊢ (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉) |
| 11 | 10 | ex 412 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 12 | eqop 8038 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥))) | |
| 13 | simpl 482 | . . . . 5 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥) → (1st ‘𝐴) = 𝐵) | |
| 14 | 12, 13 | biimtrdi 253 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
| 15 | 14 | exlimdv 1932 | . . 3 ⊢ (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
| 16 | 11, 15 | impbid 212 | . 2 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 17 | 2, 16 | syl 17 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 Vcvv 3463 〈cop 4612 × cxp 5663 ‘cfv 6541 1st c1st 7994 2nd c2nd 7995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fv 6549 df-1st 7996 df-2nd 7997 |
| This theorem is referenced by: releldm2 8050 |
| Copyright terms: Public domain | W3C validator |