Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1steq Structured version   Visualization version   GIF version

Theorem op1steq 7737
 Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 5540 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3888 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 eqid 2758 . . . . . 6 (2nd𝐴) = (2nd𝐴)
4 eqopi 7729 . . . . . 6 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = (2nd𝐴))) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
53, 4mpanr2 703 . . . . 5 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
6 fvex 6671 . . . . . 6 (2nd𝐴) ∈ V
7 opeq2 4763 . . . . . . 7 (𝑥 = (2nd𝐴) → ⟨𝐵, 𝑥⟩ = ⟨𝐵, (2nd𝐴)⟩)
87eqeq2d 2769 . . . . . 6 (𝑥 = (2nd𝐴) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝐵, (2nd𝐴)⟩))
96, 8spcev 3525 . . . . 5 (𝐴 = ⟨𝐵, (2nd𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
105, 9syl 17 . . . 4 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
1110ex 416 . . 3 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
12 eqop 7735 . . . . 5 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥)))
13 simpl 486 . . . . 5 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥) → (1st𝐴) = 𝐵)
1412, 13syl6bi 256 . . . 4 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1514exlimdv 1934 . . 3 (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1611, 15impbid 215 . 2 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
172, 16syl 17 1 (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  Vcvv 3409  ⟨cop 4528   × cxp 5522  ‘cfv 6335  1st c1st 7691  2nd c2nd 7692 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-iota 6294  df-fun 6337  df-fv 6343  df-1st 7693  df-2nd 7694 This theorem is referenced by:  releldm2  7746
 Copyright terms: Public domain W3C validator