![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > op1steq | Structured version Visualization version GIF version |
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
op1steq | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss 5685 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
2 | 1 | sseli 3973 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
3 | eqid 2726 | . . . . . 6 ⊢ (2nd ‘𝐴) = (2nd ‘𝐴) | |
4 | eqopi 8007 | . . . . . 6 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = (2nd ‘𝐴))) → 𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩) | |
5 | 3, 4 | mpanr2 701 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → 𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩) |
6 | fvex 6897 | . . . . . 6 ⊢ (2nd ‘𝐴) ∈ V | |
7 | opeq2 4869 | . . . . . . 7 ⊢ (𝑥 = (2nd ‘𝐴) → ⟨𝐵, 𝑥⟩ = ⟨𝐵, (2nd ‘𝐴)⟩) | |
8 | 7 | eqeq2d 2737 | . . . . . 6 ⊢ (𝑥 = (2nd ‘𝐴) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩)) |
9 | 6, 8 | spcev 3590 | . . . . 5 ⊢ (𝐴 = ⟨𝐵, (2nd ‘𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩) |
11 | 10 | ex 412 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
12 | eqop 8013 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥))) | |
13 | simpl 482 | . . . . 5 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥) → (1st ‘𝐴) = 𝐵) | |
14 | 12, 13 | biimtrdi 252 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ → (1st ‘𝐴) = 𝐵)) |
15 | 14 | exlimdv 1928 | . . 3 ⊢ (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩ → (1st ‘𝐴) = 𝐵)) |
16 | 11, 15 | impbid 211 | . 2 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
17 | 2, 16 | syl 17 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 ⟨cop 4629 × cxp 5667 ‘cfv 6536 1st c1st 7969 2nd c2nd 7970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fv 6544 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: releldm2 8025 |
Copyright terms: Public domain | W3C validator |