MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1steq Structured version   Visualization version   GIF version

Theorem op1steq 8074
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 5716 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 4004 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 eqid 2740 . . . . . 6 (2nd𝐴) = (2nd𝐴)
4 eqopi 8066 . . . . . 6 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = (2nd𝐴))) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
53, 4mpanr2 703 . . . . 5 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
6 fvex 6933 . . . . . 6 (2nd𝐴) ∈ V
7 opeq2 4898 . . . . . . 7 (𝑥 = (2nd𝐴) → ⟨𝐵, 𝑥⟩ = ⟨𝐵, (2nd𝐴)⟩)
87eqeq2d 2751 . . . . . 6 (𝑥 = (2nd𝐴) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝐵, (2nd𝐴)⟩))
96, 8spcev 3619 . . . . 5 (𝐴 = ⟨𝐵, (2nd𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
105, 9syl 17 . . . 4 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
1110ex 412 . . 3 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
12 eqop 8072 . . . . 5 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥)))
13 simpl 482 . . . . 5 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥) → (1st𝐴) = 𝐵)
1412, 13biimtrdi 253 . . . 4 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1514exlimdv 1932 . . 3 (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1611, 15impbid 212 . 2 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
172, 16syl 17 1 (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cop 4654   × cxp 5698  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  releldm2  8084
  Copyright terms: Public domain W3C validator