| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > op1steq | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.) |
| Ref | Expression |
|---|---|
| op1steq | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpss 5630 | . . 3 ⊢ (𝑉 × 𝑊) ⊆ (V × V) | |
| 2 | 1 | sseli 3925 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V)) |
| 3 | eqid 2731 | . . . . . 6 ⊢ (2nd ‘𝐴) = (2nd ‘𝐴) | |
| 4 | eqopi 7957 | . . . . . 6 ⊢ ((𝐴 ∈ (V × V) ∧ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = (2nd ‘𝐴))) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) | |
| 5 | 3, 4 | mpanr2 704 | . . . . 5 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → 𝐴 = 〈𝐵, (2nd ‘𝐴)〉) |
| 6 | fvex 6835 | . . . . . 6 ⊢ (2nd ‘𝐴) ∈ V | |
| 7 | opeq2 4823 | . . . . . . 7 ⊢ (𝑥 = (2nd ‘𝐴) → 〈𝐵, 𝑥〉 = 〈𝐵, (2nd ‘𝐴)〉) | |
| 8 | 7 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = (2nd ‘𝐴) → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈𝐵, (2nd ‘𝐴)〉)) |
| 9 | 6, 8 | spcev 3556 | . . . . 5 ⊢ (𝐴 = 〈𝐵, (2nd ‘𝐴)〉 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = 𝐵) → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉) |
| 11 | 10 | ex 412 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 → ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 12 | eqop 7963 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥))) | |
| 13 | simpl 482 | . . . . 5 ⊢ (((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝑥) → (1st ‘𝐴) = 𝐵) | |
| 14 | 12, 13 | biimtrdi 253 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
| 15 | 14 | exlimdv 1934 | . . 3 ⊢ (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = 〈𝐵, 𝑥〉 → (1st ‘𝐴) = 𝐵)) |
| 16 | 11, 15 | impbid 212 | . 2 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| 17 | 2, 16 | syl 17 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → ((1st ‘𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = 〈𝐵, 𝑥〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 〈cop 4579 × cxp 5612 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: releldm2 7975 |
| Copyright terms: Public domain | W3C validator |