MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  op1steq Structured version   Visualization version   GIF version

Theorem op1steq 7875
Description: Two ways of expressing that an element is the first member of an ordered pair. (Contributed by NM, 22-Sep-2013.) (Revised by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
op1steq (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem op1steq
StepHypRef Expression
1 xpss 5605 . . 3 (𝑉 × 𝑊) ⊆ (V × V)
21sseli 3917 . 2 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 ∈ (V × V))
3 eqid 2738 . . . . . 6 (2nd𝐴) = (2nd𝐴)
4 eqopi 7867 . . . . . 6 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = (2nd𝐴))) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
53, 4mpanr2 701 . . . . 5 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → 𝐴 = ⟨𝐵, (2nd𝐴)⟩)
6 fvex 6787 . . . . . 6 (2nd𝐴) ∈ V
7 opeq2 4805 . . . . . . 7 (𝑥 = (2nd𝐴) → ⟨𝐵, 𝑥⟩ = ⟨𝐵, (2nd𝐴)⟩)
87eqeq2d 2749 . . . . . 6 (𝑥 = (2nd𝐴) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝐵, (2nd𝐴)⟩))
96, 8spcev 3545 . . . . 5 (𝐴 = ⟨𝐵, (2nd𝐴)⟩ → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
105, 9syl 17 . . . 4 ((𝐴 ∈ (V × V) ∧ (1st𝐴) = 𝐵) → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩)
1110ex 413 . . 3 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 → ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
12 eqop 7873 . . . . 5 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥)))
13 simpl 483 . . . . 5 (((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝑥) → (1st𝐴) = 𝐵)
1412, 13syl6bi 252 . . . 4 (𝐴 ∈ (V × V) → (𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1514exlimdv 1936 . . 3 (𝐴 ∈ (V × V) → (∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩ → (1st𝐴) = 𝐵))
1611, 15impbid 211 . 2 (𝐴 ∈ (V × V) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
172, 16syl 17 1 (𝐴 ∈ (𝑉 × 𝑊) → ((1st𝐴) = 𝐵 ↔ ∃𝑥 𝐴 = ⟨𝐵, 𝑥⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  cop 4567   × cxp 5587  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  releldm2  7884
  Copyright terms: Public domain W3C validator