MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqop Structured version   Visualization version   GIF version

Theorem eqop 8037
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
eqop (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))

Proof of Theorem eqop
StepHypRef Expression
1 1st2nd2 8034 . . 3 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
21eqeq1d 2728 . 2 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩))
3 fvex 6906 . . 3 (1st𝐴) ∈ V
4 fvex 6906 . . 3 (2nd𝐴) ∈ V
53, 4opth 5474 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶))
62, 5bitrdi 286 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  cop 4629   × cxp 5672  cfv 6546  1st c1st 7993  2nd c2nd 7994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-iota 6498  df-fun 6548  df-fv 6554  df-1st 7995  df-2nd 7996
This theorem is referenced by:  eqop2  8038  op1steq  8039  el2xptp0  8042  lsmhash  19699  txhmeo  23795  ptuncnv  23799  wlkcomp  29565  clwlkcomp  29713  f1od2  32635  esum2dlem  33938  poimirlem22  37356  rngosn3  37638  dvhb1dimN  40698  f1o2d2  41979
  Copyright terms: Public domain W3C validator