| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqop | Structured version Visualization version GIF version | ||
| Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| eqop | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 7960 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | 1 | eqeq1d 2733 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉)) |
| 3 | fvex 6835 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
| 4 | fvex 6835 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
| 5 | 3, 4 | opth 5414 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) |
| 6 | 2, 5 | bitrdi 287 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 × cxp 5612 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: eqop2 7964 op1steq 7965 el2xptp0 7968 lsmhash 19617 txhmeo 23718 ptuncnv 23722 wlkcomp 29609 clwlkcomp 29757 f1od2 32702 gsumwrd2dccatlem 33046 esum2dlem 34105 poimirlem22 37692 rngosn3 37974 dvhb1dimN 41095 f1o2d2 42336 |
| Copyright terms: Public domain | W3C validator |