MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqop Structured version   Visualization version   GIF version

Theorem eqop 7963
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
eqop (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))

Proof of Theorem eqop
StepHypRef Expression
1 1st2nd2 7960 . . 3 (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
21eqeq1d 2733 . 2 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩))
3 fvex 6835 . . 3 (1st𝐴) ∈ V
4 fvex 6835 . . 3 (2nd𝐴) ∈ V
53, 4opth 5414 . 2 (⟨(1st𝐴), (2nd𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶))
62, 5bitrdi 287 1 (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st𝐴) = 𝐵 ∧ (2nd𝐴) = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cop 4579   × cxp 5612  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  eqop2  7964  op1steq  7965  el2xptp0  7968  lsmhash  19617  txhmeo  23718  ptuncnv  23722  wlkcomp  29609  clwlkcomp  29757  f1od2  32702  gsumwrd2dccatlem  33046  esum2dlem  34105  poimirlem22  37692  rngosn3  37974  dvhb1dimN  41095  f1o2d2  42336
  Copyright terms: Public domain W3C validator