| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqop | Structured version Visualization version GIF version | ||
| Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| eqop | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1st2nd2 8010 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 2 | 1 | eqeq1d 2732 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉)) |
| 3 | fvex 6874 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
| 4 | fvex 6874 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
| 5 | 3, 4 | opth 5439 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) |
| 6 | 2, 5 | bitrdi 287 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 × cxp 5639 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: eqop2 8014 op1steq 8015 el2xptp0 8018 lsmhash 19642 txhmeo 23697 ptuncnv 23701 wlkcomp 29566 clwlkcomp 29716 f1od2 32651 gsumwrd2dccatlem 33013 esum2dlem 34089 poimirlem22 37643 rngosn3 37925 dvhb1dimN 40987 f1o2d2 42228 |
| Copyright terms: Public domain | W3C validator |