![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqop | Structured version Visualization version GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
eqop | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 8052 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
2 | 1 | eqeq1d 2737 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉)) |
3 | fvex 6920 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
4 | fvex 6920 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
5 | 3, 4 | opth 5487 | . 2 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) |
6 | 2, 5 | bitrdi 287 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = 〈𝐵, 𝐶〉 ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 〈cop 4637 × cxp 5687 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: eqop2 8056 op1steq 8057 el2xptp0 8060 lsmhash 19738 txhmeo 23827 ptuncnv 23831 wlkcomp 29664 clwlkcomp 29812 f1od2 32739 gsumwrd2dccatlem 33052 esum2dlem 34073 poimirlem22 37629 rngosn3 37911 dvhb1dimN 40969 f1o2d2 42253 |
Copyright terms: Public domain | W3C validator |