![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqop | Structured version Visualization version GIF version |
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
eqop | ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1st2nd2 8026 | . . 3 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
2 | 1 | eqeq1d 2730 | . 2 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩)) |
3 | fvex 6904 | . . 3 ⊢ (1st ‘𝐴) ∈ V | |
4 | fvex 6904 | . . 3 ⊢ (2nd ‘𝐴) ∈ V | |
5 | 3, 4 | opth 5472 | . 2 ⊢ (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶)) |
6 | 2, 5 | bitrdi 287 | 1 ⊢ (𝐴 ∈ (𝑉 × 𝑊) → (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ((1st ‘𝐴) = 𝐵 ∧ (2nd ‘𝐴) = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⟨cop 4630 × cxp 5670 ‘cfv 6542 1st c1st 7985 2nd c2nd 7986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fv 6550 df-1st 7987 df-2nd 7988 |
This theorem is referenced by: eqop2 8030 op1steq 8031 el2xptp0 8034 lsmhash 19653 txhmeo 23700 ptuncnv 23704 wlkcomp 29438 clwlkcomp 29586 f1od2 32497 esum2dlem 33705 poimirlem22 37109 rngosn3 37391 dvhb1dimN 40453 f1o2d2 41718 |
Copyright terms: Public domain | W3C validator |