MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsup Structured version   Visualization version   GIF version

Theorem eqsup 9145
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
Assertion
Ref Expression
eqsup (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝑅,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐶(𝑧)

Proof of Theorem eqsup
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 supmo.1 . . . . 5 (𝜑𝑅 Or 𝐴)
21adantr 480 . . . 4 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → 𝑅 Or 𝐴)
32supval2 9144 . . 3 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → sup(𝐵, 𝐴, 𝑅) = (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))))
4 3simpc 1148 . . . . 5 ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
54adantl 481 . . . 4 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
6 simpr1 1192 . . . . 5 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → 𝐶𝐴)
7 breq1 5073 . . . . . . . . . . 11 (𝑥 = 𝐶 → (𝑥𝑅𝑦𝐶𝑅𝑦))
87notbid 317 . . . . . . . . . 10 (𝑥 = 𝐶 → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝐶𝑅𝑦))
98ralbidv 3120 . . . . . . . . 9 (𝑥 = 𝐶 → (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ↔ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦))
10 breq2 5074 . . . . . . . . . . 11 (𝑥 = 𝐶 → (𝑦𝑅𝑥𝑦𝑅𝐶))
1110imbi1d 341 . . . . . . . . . 10 (𝑥 = 𝐶 → ((𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1211ralbidv 3120 . . . . . . . . 9 (𝑥 = 𝐶 → (∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧) ↔ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)))
139, 12anbi12d 630 . . . . . . . 8 (𝑥 = 𝐶 → ((∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))))
1413rspcev 3552 . . . . . . 7 ((𝐶𝐴 ∧ (∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
156, 5, 14syl2anc 583 . . . . . 6 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → ∃𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
162, 15supeu 9143 . . . . 5 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧)))
1713riota2 7238 . . . . 5 ((𝐶𝐴 ∧ ∃!𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) → ((∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝐶))
186, 16, 17syl2anc 583 . . . 4 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → ((∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) ↔ (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝐶))
195, 18mpbid 231 . . 3 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → (𝑥𝐴 (∀𝑦𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐵 𝑦𝑅𝑧))) = 𝐶)
203, 19eqtrd 2778 . 2 ((𝜑 ∧ (𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))) → sup(𝐵, 𝐴, 𝑅) = 𝐶)
2120ex 412 1 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065   class class class wbr 5070   Or wor 5493  crio 7211  supcsup 9129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-po 5494  df-so 5495  df-iota 6376  df-riota 7212  df-sup 9131
This theorem is referenced by:  eqsupd  9146  eqinf  9173  suprzcl2  12607  supxr  12976
  Copyright terms: Public domain W3C validator