MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprzcl2 Structured version   Visualization version   GIF version

Theorem suprzcl2 12927
Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 12647 avoids ax-pre-sup 11192.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
suprzcl2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem suprzcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zsupss 12926 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
2 ssel2 3977 . . . . . . 7 ((𝐴 ⊆ ℤ ∧ 𝑥𝐴) → 𝑥 ∈ ℤ)
32zred 12671 . . . . . 6 ((𝐴 ⊆ ℤ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
4 ltso 11299 . . . . . . . . . 10 < Or ℝ
54a1i 11 . . . . . . . . 9 (⊤ → < Or ℝ)
65eqsup 9455 . . . . . . . 8 (⊤ → ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
76mptru 1547 . . . . . . 7 ((𝑥 ∈ ℝ ∧ ∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)
873expib 1121 . . . . . 6 (𝑥 ∈ ℝ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
93, 8syl 17 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝑥𝐴) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥))
10 simpr 484 . . . . . 6 ((𝐴 ⊆ ℤ ∧ 𝑥𝐴) → 𝑥𝐴)
11 eleq1 2820 . . . . . 6 (sup(𝐴, ℝ, < ) = 𝑥 → (sup(𝐴, ℝ, < ) ∈ 𝐴𝑥𝐴))
1210, 11syl5ibrcom 246 . . . . 5 ((𝐴 ⊆ ℤ ∧ 𝑥𝐴) → (sup(𝐴, ℝ, < ) = 𝑥 → sup(𝐴, ℝ, < ) ∈ 𝐴))
139, 12syld 47 . . . 4 ((𝐴 ⊆ ℤ ∧ 𝑥𝐴) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴))
1413rexlimdva 3154 . . 3 (𝐴 ⊆ ℤ → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴))
15143ad2ant1 1132 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → (∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴))
161, 15mpd 15 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3948  c0 4322   class class class wbr 5148   Or wor 5587  supcsup 9439  cr 11113   < clt 11253  cle 11254  cz 12563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-inf 9442  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828
This theorem is referenced by:  suprzub  12928  gcdcllem3  16447  maxprmfct  16651  pcprecl  16777  prmreclem1  16854  0ram  16958  0ramcl  16961  gexex  19763
  Copyright terms: Public domain W3C validator