![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suprzcl2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 11744 avoids ax-pre-sup 10301.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
suprzcl2 | ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsupss 12019 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
2 | ssel2 3792 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) | |
3 | 2 | zred 11769 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
4 | ltso 10407 | . . . . . . . . . 10 ⊢ < Or ℝ | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → < Or ℝ) |
6 | 5 | eqsup 8603 | . . . . . . . 8 ⊢ (⊤ → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
7 | 6 | mptru 1661 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥) |
8 | 7 | 3expib 1153 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
9 | 3, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
10 | simpr 478 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | eleq1 2865 | . . . . . 6 ⊢ (sup(𝐴, ℝ, < ) = 𝑥 → (sup(𝐴, ℝ, < ) ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
12 | 10, 11 | syl5ibrcom 239 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → (sup(𝐴, ℝ, < ) = 𝑥 → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
13 | 9, 12 | syld 47 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
14 | 13 | rexlimdva 3211 | . . 3 ⊢ (𝐴 ⊆ ℤ → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
15 | 14 | 3ad2ant1 1164 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
16 | 1, 15 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ⊤wtru 1654 ∈ wcel 2157 ≠ wne 2970 ∀wral 3088 ∃wrex 3089 ⊆ wss 3768 ∅c0 4114 class class class wbr 4842 Or wor 5231 supcsup 8587 ℝcr 10222 < clt 10362 ≤ cle 10363 ℤcz 11663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-sup 8589 df-inf 8590 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-n0 11578 df-z 11664 df-uz 11928 |
This theorem is referenced by: suprzub 12021 gcdcllem3 15555 maxprmfct 15751 pcprecl 15874 prmreclem1 15950 0ram 16054 0ramcl 16057 gexex 18568 |
Copyright terms: Public domain | W3C validator |