![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suprzcl2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 12640 avoids ax-pre-sup 11185.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
suprzcl2 | ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsupss 12919 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
2 | ssel2 3970 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) | |
3 | 2 | zred 12664 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
4 | ltso 11292 | . . . . . . . . . 10 ⊢ < Or ℝ | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → < Or ℝ) |
6 | 5 | eqsup 9448 | . . . . . . . 8 ⊢ (⊤ → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
7 | 6 | mptru 1540 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥) |
8 | 7 | 3expib 1119 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
9 | 3, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | eleq1 2813 | . . . . . 6 ⊢ (sup(𝐴, ℝ, < ) = 𝑥 → (sup(𝐴, ℝ, < ) ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
12 | 10, 11 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → (sup(𝐴, ℝ, < ) = 𝑥 → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
13 | 9, 12 | syld 47 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
14 | 13 | rexlimdva 3147 | . . 3 ⊢ (𝐴 ⊆ ℤ → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
15 | 14 | 3ad2ant1 1130 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
16 | 1, 15 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 ⊆ wss 3941 ∅c0 4315 class class class wbr 5139 Or wor 5578 supcsup 9432 ℝcr 11106 < clt 11246 ≤ cle 11247 ℤcz 12556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-n0 12471 df-z 12557 df-uz 12821 |
This theorem is referenced by: suprzub 12921 gcdcllem3 16441 maxprmfct 16645 pcprecl 16773 prmreclem1 16850 0ram 16954 0ramcl 16957 gexex 19765 |
Copyright terms: Public domain | W3C validator |