Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suprzcl2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of integers is a member of the set. (This version of suprzcl 12136 avoids ax-pre-sup 10686.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
suprzcl2 | ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsupss 12412 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | |
2 | ssel2 3870 | . . . . . . 7 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) | |
3 | 2 | zred 12161 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
4 | ltso 10792 | . . . . . . . . . 10 ⊢ < Or ℝ | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → < Or ℝ) |
6 | 5 | eqsup 8986 | . . . . . . . 8 ⊢ (⊤ → ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
7 | 6 | mptru 1549 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥) |
8 | 7 | 3expib 1123 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
9 | 3, 8 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) = 𝑥)) |
10 | simpr 488 | . . . . . 6 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
11 | eleq1 2820 | . . . . . 6 ⊢ (sup(𝐴, ℝ, < ) = 𝑥 → (sup(𝐴, ℝ, < ) ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
12 | 10, 11 | syl5ibrcom 250 | . . . . 5 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → (sup(𝐴, ℝ, < ) = 𝑥 → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
13 | 9, 12 | syld 47 | . . . 4 ⊢ ((𝐴 ⊆ ℤ ∧ 𝑥 ∈ 𝐴) → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
14 | 13 | rexlimdva 3193 | . . 3 ⊢ (𝐴 ⊆ ℤ → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
15 | 14 | 3ad2ant1 1134 | . 2 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → (∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → sup(𝐴, ℝ, < ) ∈ 𝐴)) |
16 | 1, 15 | mpd 15 | 1 ⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ⊤wtru 1543 ∈ wcel 2113 ≠ wne 2934 ∀wral 3053 ∃wrex 3054 ⊆ wss 3841 ∅c0 4209 class class class wbr 5027 Or wor 5437 supcsup 8970 ℝcr 10607 < clt 10746 ≤ cle 10747 ℤcz 12055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-sup 8972 df-inf 8973 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-n0 11970 df-z 12056 df-uz 12318 |
This theorem is referenced by: suprzub 12414 gcdcllem3 15937 maxprmfct 16143 pcprecl 16269 prmreclem1 16345 0ram 16449 0ramcl 16452 gexex 19085 |
Copyright terms: Public domain | W3C validator |