![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxr | Structured version Visualization version GIF version |
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
supxr | ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 768 | . 2 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → 𝐵 ∈ ℝ*) | |
2 | simprl 770 | . 2 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → ∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥) | |
3 | xrub 13317 | . . . 4 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦) ↔ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) | |
4 | 3 | biimpa 476 | . . 3 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) → ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
5 | 4 | adantrl 715 | . 2 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
6 | xrltso 13146 | . . . . 5 ⊢ < Or ℝ* | |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → < Or ℝ*) |
8 | 7 | eqsup 9473 | . . 3 ⊢ (⊤ → ((𝐵 ∈ ℝ* ∧ ∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) → sup(𝐴, ℝ*, < ) = 𝐵)) |
9 | 8 | mptru 1541 | . 2 ⊢ ((𝐵 ∈ ℝ* ∧ ∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) → sup(𝐴, ℝ*, < ) = 𝐵) |
10 | 1, 2, 5, 9 | syl3anc 1369 | 1 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 ∀wral 3057 ∃wrex 3066 ⊆ wss 3945 class class class wbr 5142 Or wor 5583 supcsup 9457 ℝcr 11131 ℝ*cxr 11271 < clt 11272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 |
This theorem is referenced by: supxr2 13319 supxrun 13321 supxrpnf 13323 supxrunb1 13324 supxrunb2 13325 xrsup0 13328 |
Copyright terms: Public domain | W3C validator |