MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxr Structured version   Visualization version   GIF version

Theorem supxr 13241
Description: The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
supxr (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem supxr
StepHypRef Expression
1 simplr 768 . 2 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → 𝐵 ∈ ℝ*)
2 simprl 770 . 2 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → ∀𝑥𝐴 ¬ 𝐵 < 𝑥)
3 xrub 13240 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦) ↔ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦)))
43biimpa 478 . . 3 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦)) → ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))
54adantrl 715 . 2 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))
6 xrltso 13069 . . . . 5 < Or ℝ*
76a1i 11 . . . 4 (⊤ → < Or ℝ*)
87eqsup 9400 . . 3 (⊤ → ((𝐵 ∈ ℝ* ∧ ∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦)) → sup(𝐴, ℝ*, < ) = 𝐵))
98mptru 1549 . 2 ((𝐵 ∈ ℝ* ∧ ∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦)) → sup(𝐴, ℝ*, < ) = 𝐵)
101, 2, 5, 9syl3anc 1372 1 (((𝐴 ⊆ ℝ*𝐵 ∈ ℝ*) ∧ (∀𝑥𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wtru 1543  wcel 2107  wral 3061  wrex 3070  wss 3914   class class class wbr 5109   Or wor 5548  supcsup 9384  cr 11058  *cxr 11196   < clt 11197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396
This theorem is referenced by:  supxr2  13242  supxrun  13244  supxrpnf  13246  supxrunb1  13247  supxrunb2  13248  xrsup0  13251
  Copyright terms: Public domain W3C validator