![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjimi | Structured version Visualization version GIF version |
Description: Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
Ref | Expression |
---|---|
disjimi.1 | ⊢ Disj 𝑅 |
Ref | Expression |
---|---|
disjimi | ⊢ EqvRel ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjimi.1 | . 2 ⊢ Disj 𝑅 | |
2 | disjim 38775 | . 2 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ EqvRel ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ≀ ccoss 38174 EqvRel weqvrel 38191 Disj wdisjALTV 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-coss 38405 df-refrel 38506 df-cnvrefrel 38521 df-symrel 38538 df-trrel 38568 df-eqvrel 38579 df-disjALTV 38699 |
This theorem is referenced by: eqvrel0 38780 eqvrelcoss0 38782 eqvrelid 38783 eqvrel1cossidres 38784 eqvrel1cossinidres 38785 eqvrel1cossxrnidres 38786 eqvrelcossid 38788 |
Copyright terms: Public domain | W3C validator |