| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjimi | Structured version Visualization version GIF version | ||
| Description: Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjimi.1 | ⊢ Disj 𝑅 |
| Ref | Expression |
|---|---|
| disjimi | ⊢ EqvRel ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjimi.1 | . 2 ⊢ Disj 𝑅 | |
| 2 | disjim 38773 | . 2 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ EqvRel ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ≀ ccoss 38169 EqvRel weqvrel 38186 Disj wdisjALTV 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-coss 38402 df-refrel 38503 df-cnvrefrel 38518 df-symrel 38535 df-trrel 38565 df-eqvrel 38576 df-disjALTV 38697 |
| This theorem is referenced by: eqvrel0 38778 eqvrelcoss0 38780 eqvrelid 38781 eqvrel1cossidres 38782 eqvrel1cossinidres 38783 eqvrel1cossxrnidres 38784 eqvrelcossid 38786 |
| Copyright terms: Public domain | W3C validator |