| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjimi | Structured version Visualization version GIF version | ||
| Description: Every disjoint relation generates equivalent cosets by the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021.) |
| Ref | Expression |
|---|---|
| disjimi.1 | ⊢ Disj 𝑅 |
| Ref | Expression |
|---|---|
| disjimi | ⊢ EqvRel ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjimi.1 | . 2 ⊢ Disj 𝑅 | |
| 2 | disjim 38818 | . 2 ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ EqvRel ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ≀ ccoss 38214 EqvRel weqvrel 38231 Disj wdisjALTV 38248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-coss 38447 df-refrel 38548 df-cnvrefrel 38563 df-symrel 38580 df-trrel 38610 df-eqvrel 38621 df-disjALTV 38742 |
| This theorem is referenced by: eqvrel0 38823 eqvrelcoss0 38825 eqvrelid 38826 eqvrel1cossidres 38827 eqvrel1cossinidres 38828 eqvrel1cossxrnidres 38829 eqvrelcossid 38831 |
| Copyright terms: Public domain | W3C validator |