![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version |
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | β’ π = {β¨π£, πβ© β£ π:β βΆβ } |
Ref | Expression |
---|---|
griedg0ssusgr | β’ π β USGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | griedg0prc.u | . . . . 5 β’ π = {β¨π£, πβ© β£ π:β βΆβ } | |
2 | 1 | eleq2i 2817 | . . . 4 β’ (π β π β π β {β¨π£, πβ© β£ π:β βΆβ }) |
3 | elopab 5524 | . . . 4 β’ (π β {β¨π£, πβ© β£ π:β βΆβ } β βπ£βπ(π = β¨π£, πβ© β§ π:β βΆβ )) | |
4 | 2, 3 | bitri 274 | . . 3 β’ (π β π β βπ£βπ(π = β¨π£, πβ© β§ π:β βΆβ )) |
5 | opex 5461 | . . . . . . . 8 β’ β¨π£, πβ© β V | |
6 | 5 | a1i 11 | . . . . . . 7 β’ (π:β βΆβ β β¨π£, πβ© β V) |
7 | vex 3467 | . . . . . . . . 9 β’ π£ β V | |
8 | vex 3467 | . . . . . . . . 9 β’ π β V | |
9 | 7, 8 | opiedgfvi 28862 | . . . . . . . 8 β’ (iEdgββ¨π£, πβ©) = π |
10 | f0bi 6774 | . . . . . . . . 9 β’ (π:β βΆβ β π = β ) | |
11 | 10 | biimpi 215 | . . . . . . . 8 β’ (π:β βΆβ β π = β ) |
12 | 9, 11 | eqtrid 2777 | . . . . . . 7 β’ (π:β βΆβ β (iEdgββ¨π£, πβ©) = β ) |
13 | 6, 12 | usgr0e 29088 | . . . . . 6 β’ (π:β βΆβ β β¨π£, πβ© β USGraph) |
14 | 13 | adantl 480 | . . . . 5 β’ ((π = β¨π£, πβ© β§ π:β βΆβ ) β β¨π£, πβ© β USGraph) |
15 | eleq1 2813 | . . . . . 6 β’ (π = β¨π£, πβ© β (π β USGraph β β¨π£, πβ© β USGraph)) | |
16 | 15 | adantr 479 | . . . . 5 β’ ((π = β¨π£, πβ© β§ π:β βΆβ ) β (π β USGraph β β¨π£, πβ© β USGraph)) |
17 | 14, 16 | mpbird 256 | . . . 4 β’ ((π = β¨π£, πβ© β§ π:β βΆβ ) β π β USGraph) |
18 | 17 | exlimivv 1927 | . . 3 β’ (βπ£βπ(π = β¨π£, πβ© β§ π:β βΆβ ) β π β USGraph) |
19 | 4, 18 | sylbi 216 | . 2 β’ (π β π β π β USGraph) |
20 | 19 | ssriv 3977 | 1 β’ π β USGraph |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 394 = wceq 1533 βwex 1773 β wcel 2098 Vcvv 3463 β wss 3941 β c0 4319 β¨cop 4631 {copab 5206 βΆwf 6539 βcfv 6543 iEdgciedg 28849 USGraphcusgr 29001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fv 6551 df-2nd 7988 df-iedg 28851 df-usgr 29003 |
This theorem is referenced by: usgrprc 29118 |
Copyright terms: Public domain | W3C validator |