| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version | ||
| Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
| Ref | Expression |
|---|---|
| griedg0ssusgr | ⊢ 𝑈 ⊆ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | griedg0prc.u | . . . . 5 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 2 | 1 | eleq2i 2821 | . . . 4 ⊢ (𝑔 ∈ 𝑈 ↔ 𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅}) |
| 3 | elopab 5465 | . . . 4 ⊢ (𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑔 ∈ 𝑈 ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) |
| 5 | opex 5402 | . . . . . . . 8 ⊢ 〈𝑣, 𝑒〉 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ V) |
| 7 | vex 3438 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
| 8 | vex 3438 | . . . . . . . . 9 ⊢ 𝑒 ∈ V | |
| 9 | 7, 8 | opiedgfvi 28981 | . . . . . . . 8 ⊢ (iEdg‘〈𝑣, 𝑒〉) = 𝑒 |
| 10 | f0bi 6702 | . . . . . . . . 9 ⊢ (𝑒:∅⟶∅ ↔ 𝑒 = ∅) | |
| 11 | 10 | biimpi 216 | . . . . . . . 8 ⊢ (𝑒:∅⟶∅ → 𝑒 = ∅) |
| 12 | 9, 11 | eqtrid 2777 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → (iEdg‘〈𝑣, 𝑒〉) = ∅) |
| 13 | 6, 12 | usgr0e 29207 | . . . . . 6 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ USGraph) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 〈𝑣, 𝑒〉 ∈ USGraph) |
| 15 | eleq1 2817 | . . . . . 6 ⊢ (𝑔 = 〈𝑣, 𝑒〉 → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) |
| 17 | 14, 16 | mpbird 257 | . . . 4 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
| 18 | 17 | exlimivv 1933 | . . 3 ⊢ (∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
| 19 | 4, 18 | sylbi 217 | . 2 ⊢ (𝑔 ∈ 𝑈 → 𝑔 ∈ USGraph) |
| 20 | 19 | ssriv 3936 | 1 ⊢ 𝑈 ⊆ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 ⊆ wss 3900 ∅c0 4281 〈cop 4580 {copab 5151 ⟶wf 6473 ‘cfv 6477 iEdgciedg 28968 USGraphcusgr 29120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fv 6485 df-2nd 7917 df-iedg 28970 df-usgr 29122 |
| This theorem is referenced by: usgrprc 29237 |
| Copyright terms: Public domain | W3C validator |