MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0ssusgr Structured version   Visualization version   GIF version

Theorem griedg0ssusgr 29117
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u π‘ˆ = {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…}
Assertion
Ref Expression
griedg0ssusgr π‘ˆ βŠ† USGraph
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   π‘ˆ(𝑣,𝑒)

Proof of Theorem griedg0ssusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 griedg0prc.u . . . . 5 π‘ˆ = {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…}
21eleq2i 2817 . . . 4 (𝑔 ∈ π‘ˆ ↔ 𝑔 ∈ {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…})
3 elopab 5524 . . . 4 (𝑔 ∈ {βŸ¨π‘£, π‘’βŸ© ∣ 𝑒:βˆ…βŸΆβˆ…} ↔ βˆƒπ‘£βˆƒπ‘’(𝑔 = βŸ¨π‘£, π‘’βŸ© ∧ 𝑒:βˆ…βŸΆβˆ…))
42, 3bitri 274 . . 3 (𝑔 ∈ π‘ˆ ↔ βˆƒπ‘£βˆƒπ‘’(𝑔 = βŸ¨π‘£, π‘’βŸ© ∧ 𝑒:βˆ…βŸΆβˆ…))
5 opex 5461 . . . . . . . 8 βŸ¨π‘£, π‘’βŸ© ∈ V
65a1i 11 . . . . . . 7 (𝑒:βˆ…βŸΆβˆ… β†’ βŸ¨π‘£, π‘’βŸ© ∈ V)
7 vex 3467 . . . . . . . . 9 𝑣 ∈ V
8 vex 3467 . . . . . . . . 9 𝑒 ∈ V
97, 8opiedgfvi 28862 . . . . . . . 8 (iEdgβ€˜βŸ¨π‘£, π‘’βŸ©) = 𝑒
10 f0bi 6774 . . . . . . . . 9 (𝑒:βˆ…βŸΆβˆ… ↔ 𝑒 = βˆ…)
1110biimpi 215 . . . . . . . 8 (𝑒:βˆ…βŸΆβˆ… β†’ 𝑒 = βˆ…)
129, 11eqtrid 2777 . . . . . . 7 (𝑒:βˆ…βŸΆβˆ… β†’ (iEdgβ€˜βŸ¨π‘£, π‘’βŸ©) = βˆ…)
136, 12usgr0e 29088 . . . . . 6 (𝑒:βˆ…βŸΆβˆ… β†’ βŸ¨π‘£, π‘’βŸ© ∈ USGraph)
1413adantl 480 . . . . 5 ((𝑔 = βŸ¨π‘£, π‘’βŸ© ∧ 𝑒:βˆ…βŸΆβˆ…) β†’ βŸ¨π‘£, π‘’βŸ© ∈ USGraph)
15 eleq1 2813 . . . . . 6 (𝑔 = βŸ¨π‘£, π‘’βŸ© β†’ (𝑔 ∈ USGraph ↔ βŸ¨π‘£, π‘’βŸ© ∈ USGraph))
1615adantr 479 . . . . 5 ((𝑔 = βŸ¨π‘£, π‘’βŸ© ∧ 𝑒:βˆ…βŸΆβˆ…) β†’ (𝑔 ∈ USGraph ↔ βŸ¨π‘£, π‘’βŸ© ∈ USGraph))
1714, 16mpbird 256 . . . 4 ((𝑔 = βŸ¨π‘£, π‘’βŸ© ∧ 𝑒:βˆ…βŸΆβˆ…) β†’ 𝑔 ∈ USGraph)
1817exlimivv 1927 . . 3 (βˆƒπ‘£βˆƒπ‘’(𝑔 = βŸ¨π‘£, π‘’βŸ© ∧ 𝑒:βˆ…βŸΆβˆ…) β†’ 𝑔 ∈ USGraph)
194, 18sylbi 216 . 2 (𝑔 ∈ π‘ˆ β†’ 𝑔 ∈ USGraph)
2019ssriv 3977 1 π‘ˆ βŠ† USGraph
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  Vcvv 3463   βŠ† wss 3941  βˆ…c0 4319  βŸ¨cop 4631  {copab 5206  βŸΆwf 6539  β€˜cfv 6543  iEdgciedg 28849  USGraphcusgr 29001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fv 6551  df-2nd 7988  df-iedg 28851  df-usgr 29003
This theorem is referenced by:  usgrprc  29118
  Copyright terms: Public domain W3C validator