| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version | ||
| Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
| Ref | Expression |
|---|---|
| griedg0ssusgr | ⊢ 𝑈 ⊆ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | griedg0prc.u | . . . . 5 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 2 | 1 | eleq2i 2821 | . . . 4 ⊢ (𝑔 ∈ 𝑈 ↔ 𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅}) |
| 3 | elopab 5490 | . . . 4 ⊢ (𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑔 ∈ 𝑈 ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) |
| 5 | opex 5427 | . . . . . . . 8 ⊢ 〈𝑣, 𝑒〉 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ V) |
| 7 | vex 3454 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
| 8 | vex 3454 | . . . . . . . . 9 ⊢ 𝑒 ∈ V | |
| 9 | 7, 8 | opiedgfvi 28944 | . . . . . . . 8 ⊢ (iEdg‘〈𝑣, 𝑒〉) = 𝑒 |
| 10 | f0bi 6746 | . . . . . . . . 9 ⊢ (𝑒:∅⟶∅ ↔ 𝑒 = ∅) | |
| 11 | 10 | biimpi 216 | . . . . . . . 8 ⊢ (𝑒:∅⟶∅ → 𝑒 = ∅) |
| 12 | 9, 11 | eqtrid 2777 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → (iEdg‘〈𝑣, 𝑒〉) = ∅) |
| 13 | 6, 12 | usgr0e 29170 | . . . . . 6 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ USGraph) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 〈𝑣, 𝑒〉 ∈ USGraph) |
| 15 | eleq1 2817 | . . . . . 6 ⊢ (𝑔 = 〈𝑣, 𝑒〉 → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) |
| 17 | 14, 16 | mpbird 257 | . . . 4 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
| 18 | 17 | exlimivv 1932 | . . 3 ⊢ (∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
| 19 | 4, 18 | sylbi 217 | . 2 ⊢ (𝑔 ∈ 𝑈 → 𝑔 ∈ USGraph) |
| 20 | 19 | ssriv 3953 | 1 ⊢ 𝑈 ⊆ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 〈cop 4598 {copab 5172 ⟶wf 6510 ‘cfv 6514 iEdgciedg 28931 USGraphcusgr 29083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 df-2nd 7972 df-iedg 28933 df-usgr 29085 |
| This theorem is referenced by: usgrprc 29200 |
| Copyright terms: Public domain | W3C validator |