![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version |
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | β’ π = {β¨π£, πβ© β£ π:β βΆβ } |
Ref | Expression |
---|---|
griedg0ssusgr | β’ π β USGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | griedg0prc.u | . . . . 5 β’ π = {β¨π£, πβ© β£ π:β βΆβ } | |
2 | 1 | eleq2i 2820 | . . . 4 β’ (π β π β π β {β¨π£, πβ© β£ π:β βΆβ }) |
3 | elopab 5523 | . . . 4 β’ (π β {β¨π£, πβ© β£ π:β βΆβ } β βπ£βπ(π = β¨π£, πβ© β§ π:β βΆβ )) | |
4 | 2, 3 | bitri 275 | . . 3 β’ (π β π β βπ£βπ(π = β¨π£, πβ© β§ π:β βΆβ )) |
5 | opex 5460 | . . . . . . . 8 β’ β¨π£, πβ© β V | |
6 | 5 | a1i 11 | . . . . . . 7 β’ (π:β βΆβ β β¨π£, πβ© β V) |
7 | vex 3473 | . . . . . . . . 9 β’ π£ β V | |
8 | vex 3473 | . . . . . . . . 9 β’ π β V | |
9 | 7, 8 | opiedgfvi 28810 | . . . . . . . 8 β’ (iEdgββ¨π£, πβ©) = π |
10 | f0bi 6774 | . . . . . . . . 9 β’ (π:β βΆβ β π = β ) | |
11 | 10 | biimpi 215 | . . . . . . . 8 β’ (π:β βΆβ β π = β ) |
12 | 9, 11 | eqtrid 2779 | . . . . . . 7 β’ (π:β βΆβ β (iEdgββ¨π£, πβ©) = β ) |
13 | 6, 12 | usgr0e 29036 | . . . . . 6 β’ (π:β βΆβ β β¨π£, πβ© β USGraph) |
14 | 13 | adantl 481 | . . . . 5 β’ ((π = β¨π£, πβ© β§ π:β βΆβ ) β β¨π£, πβ© β USGraph) |
15 | eleq1 2816 | . . . . . 6 β’ (π = β¨π£, πβ© β (π β USGraph β β¨π£, πβ© β USGraph)) | |
16 | 15 | adantr 480 | . . . . 5 β’ ((π = β¨π£, πβ© β§ π:β βΆβ ) β (π β USGraph β β¨π£, πβ© β USGraph)) |
17 | 14, 16 | mpbird 257 | . . . 4 β’ ((π = β¨π£, πβ© β§ π:β βΆβ ) β π β USGraph) |
18 | 17 | exlimivv 1928 | . . 3 β’ (βπ£βπ(π = β¨π£, πβ© β§ π:β βΆβ ) β π β USGraph) |
19 | 4, 18 | sylbi 216 | . 2 β’ (π β π β π β USGraph) |
20 | 19 | ssriv 3982 | 1 β’ π β USGraph |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 = wceq 1534 βwex 1774 β wcel 2099 Vcvv 3469 β wss 3944 β c0 4318 β¨cop 4630 {copab 5204 βΆwf 6538 βcfv 6542 iEdgciedg 28797 USGraphcusgr 28949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fv 6550 df-2nd 7988 df-iedg 28799 df-usgr 28951 |
This theorem is referenced by: usgrprc 29066 |
Copyright terms: Public domain | W3C validator |