MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0ssusgr Structured version   Visualization version   GIF version

Theorem griedg0ssusgr 27535
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
Assertion
Ref Expression
griedg0ssusgr 𝑈 ⊆ USGraph
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   𝑈(𝑣,𝑒)

Proof of Theorem griedg0ssusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 griedg0prc.u . . . . 5 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
21eleq2i 2830 . . . 4 (𝑔𝑈𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅})
3 elopab 5433 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
42, 3bitri 274 . . 3 (𝑔𝑈 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
5 opex 5373 . . . . . . . 8 𝑣, 𝑒⟩ ∈ V
65a1i 11 . . . . . . 7 (𝑒:∅⟶∅ → ⟨𝑣, 𝑒⟩ ∈ V)
7 vex 3426 . . . . . . . . 9 𝑣 ∈ V
8 vex 3426 . . . . . . . . 9 𝑒 ∈ V
97, 8opiedgfvi 27283 . . . . . . . 8 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 f0bi 6641 . . . . . . . . 9 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
1110biimpi 215 . . . . . . . 8 (𝑒:∅⟶∅ → 𝑒 = ∅)
129, 11syl5eq 2791 . . . . . . 7 (𝑒:∅⟶∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
136, 12usgr0e 27506 . . . . . 6 (𝑒:∅⟶∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
1413adantl 481 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
15 eleq1 2826 . . . . . 6 (𝑔 = ⟨𝑣, 𝑒⟩ → (𝑔 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
1615adantr 480 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
1714, 16mpbird 256 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph)
1817exlimivv 1936 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph)
194, 18sylbi 216 . 2 (𝑔𝑈𝑔 ∈ USGraph)
2019ssriv 3921 1 𝑈 ⊆ USGraph
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  wss 3883  c0 4253  cop 4564  {copab 5132  wf 6414  cfv 6418  iEdgciedg 27270  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426  df-2nd 7805  df-iedg 27272  df-usgr 27424
This theorem is referenced by:  usgrprc  27536
  Copyright terms: Public domain W3C validator