MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0ssusgr Structured version   Visualization version   GIF version

Theorem griedg0ssusgr 29199
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
Assertion
Ref Expression
griedg0ssusgr 𝑈 ⊆ USGraph
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   𝑈(𝑣,𝑒)

Proof of Theorem griedg0ssusgr
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 griedg0prc.u . . . . 5 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
21eleq2i 2821 . . . 4 (𝑔𝑈𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅})
3 elopab 5490 . . . 4 (𝑔 ∈ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
42, 3bitri 275 . . 3 (𝑔𝑈 ↔ ∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅))
5 opex 5427 . . . . . . . 8 𝑣, 𝑒⟩ ∈ V
65a1i 11 . . . . . . 7 (𝑒:∅⟶∅ → ⟨𝑣, 𝑒⟩ ∈ V)
7 vex 3454 . . . . . . . . 9 𝑣 ∈ V
8 vex 3454 . . . . . . . . 9 𝑒 ∈ V
97, 8opiedgfvi 28944 . . . . . . . 8 (iEdg‘⟨𝑣, 𝑒⟩) = 𝑒
10 f0bi 6746 . . . . . . . . 9 (𝑒:∅⟶∅ ↔ 𝑒 = ∅)
1110biimpi 216 . . . . . . . 8 (𝑒:∅⟶∅ → 𝑒 = ∅)
129, 11eqtrid 2777 . . . . . . 7 (𝑒:∅⟶∅ → (iEdg‘⟨𝑣, 𝑒⟩) = ∅)
136, 12usgr0e 29170 . . . . . 6 (𝑒:∅⟶∅ → ⟨𝑣, 𝑒⟩ ∈ USGraph)
1413adantl 481 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → ⟨𝑣, 𝑒⟩ ∈ USGraph)
15 eleq1 2817 . . . . . 6 (𝑔 = ⟨𝑣, 𝑒⟩ → (𝑔 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
1615adantr 480 . . . . 5 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ ⟨𝑣, 𝑒⟩ ∈ USGraph))
1714, 16mpbird 257 . . . 4 ((𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph)
1817exlimivv 1932 . . 3 (∃𝑣𝑒(𝑔 = ⟨𝑣, 𝑒⟩ ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph)
194, 18sylbi 217 . 2 (𝑔𝑈𝑔 ∈ USGraph)
2019ssriv 3953 1 𝑈 ⊆ USGraph
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  wss 3917  c0 4299  cop 4598  {copab 5172  wf 6510  cfv 6514  iEdgciedg 28931  USGraphcusgr 29083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522  df-2nd 7972  df-iedg 28933  df-usgr 29085
This theorem is referenced by:  usgrprc  29200
  Copyright terms: Public domain W3C validator