![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version |
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
Ref | Expression |
---|---|
griedg0ssusgr | ⊢ 𝑈 ⊆ USGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | griedg0prc.u | . . . . 5 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
2 | 1 | eleq2i 2836 | . . . 4 ⊢ (𝑔 ∈ 𝑈 ↔ 𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅}) |
3 | elopab 5546 | . . . 4 ⊢ (𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑔 ∈ 𝑈 ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) |
5 | opex 5484 | . . . . . . . 8 ⊢ 〈𝑣, 𝑒〉 ∈ V | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ V) |
7 | vex 3492 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
8 | vex 3492 | . . . . . . . . 9 ⊢ 𝑒 ∈ V | |
9 | 7, 8 | opiedgfvi 29045 | . . . . . . . 8 ⊢ (iEdg‘〈𝑣, 𝑒〉) = 𝑒 |
10 | f0bi 6804 | . . . . . . . . 9 ⊢ (𝑒:∅⟶∅ ↔ 𝑒 = ∅) | |
11 | 10 | biimpi 216 | . . . . . . . 8 ⊢ (𝑒:∅⟶∅ → 𝑒 = ∅) |
12 | 9, 11 | eqtrid 2792 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → (iEdg‘〈𝑣, 𝑒〉) = ∅) |
13 | 6, 12 | usgr0e 29271 | . . . . . 6 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ USGraph) |
14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 〈𝑣, 𝑒〉 ∈ USGraph) |
15 | eleq1 2832 | . . . . . 6 ⊢ (𝑔 = 〈𝑣, 𝑒〉 → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) | |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) |
17 | 14, 16 | mpbird 257 | . . . 4 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
18 | 17 | exlimivv 1931 | . . 3 ⊢ (∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
19 | 4, 18 | sylbi 217 | . 2 ⊢ (𝑔 ∈ 𝑈 → 𝑔 ∈ USGraph) |
20 | 19 | ssriv 4012 | 1 ⊢ 𝑈 ⊆ USGraph |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 〈cop 4654 {copab 5228 ⟶wf 6569 ‘cfv 6573 iEdgciedg 29032 USGraphcusgr 29184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fv 6581 df-2nd 8031 df-iedg 29034 df-usgr 29186 |
This theorem is referenced by: usgrprc 29301 |
Copyright terms: Public domain | W3C validator |