| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version | ||
| Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
| Ref | Expression |
|---|---|
| griedg0ssusgr | ⊢ 𝑈 ⊆ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | griedg0prc.u | . . . . 5 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 2 | 1 | eleq2i 2826 | . . . 4 ⊢ (𝑔 ∈ 𝑈 ↔ 𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅}) |
| 3 | elopab 5502 | . . . 4 ⊢ (𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑔 ∈ 𝑈 ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) |
| 5 | opex 5439 | . . . . . . . 8 ⊢ 〈𝑣, 𝑒〉 ∈ V | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ V) |
| 7 | vex 3463 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
| 8 | vex 3463 | . . . . . . . . 9 ⊢ 𝑒 ∈ V | |
| 9 | 7, 8 | opiedgfvi 28989 | . . . . . . . 8 ⊢ (iEdg‘〈𝑣, 𝑒〉) = 𝑒 |
| 10 | f0bi 6761 | . . . . . . . . 9 ⊢ (𝑒:∅⟶∅ ↔ 𝑒 = ∅) | |
| 11 | 10 | biimpi 216 | . . . . . . . 8 ⊢ (𝑒:∅⟶∅ → 𝑒 = ∅) |
| 12 | 9, 11 | eqtrid 2782 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → (iEdg‘〈𝑣, 𝑒〉) = ∅) |
| 13 | 6, 12 | usgr0e 29215 | . . . . . 6 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ USGraph) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 〈𝑣, 𝑒〉 ∈ USGraph) |
| 15 | eleq1 2822 | . . . . . 6 ⊢ (𝑔 = 〈𝑣, 𝑒〉 → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) | |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) |
| 17 | 14, 16 | mpbird 257 | . . . 4 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
| 18 | 17 | exlimivv 1932 | . . 3 ⊢ (∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
| 19 | 4, 18 | sylbi 217 | . 2 ⊢ (𝑔 ∈ 𝑈 → 𝑔 ∈ USGraph) |
| 20 | 19 | ssriv 3962 | 1 ⊢ 𝑈 ⊆ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 〈cop 4607 {copab 5181 ⟶wf 6527 ‘cfv 6531 iEdgciedg 28976 USGraphcusgr 29128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fv 6539 df-2nd 7989 df-iedg 28978 df-usgr 29130 |
| This theorem is referenced by: usgrprc 29245 |
| Copyright terms: Public domain | W3C validator |