MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdm0 Structured version   Visualization version   GIF version

Theorem mapdm0 8856
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵m ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5277 . . . . 5 ∅ ∈ V
2 elmapg 8853 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 691 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 6761 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 287 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 = ∅))
6 velsn 4617 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
75, 6bitr4di 289 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 ∈ {∅}))
87eqrdv 2733 1 (𝐵𝑉 → (𝐵m ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  {csn 4601  wf 6527  (class class class)co 7405  m cmap 8840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842
This theorem is referenced by:  map0e  8896  hashmap  14453  ehl0base  25368  1arithidom  33552  repr0  34643  mpct  45225  rrxtopn0  46322  qndenserrnbl  46324  hoicvr  46577  ovn02  46597  ovnhoi  46632  ovnlecvr2  46639  hoiqssbl  46654  hoimbl  46660  0aryfvalel  48614
  Copyright terms: Public domain W3C validator