| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapdm0 | Structured version Visualization version GIF version | ||
| Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | elmapg 8763 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) | |
| 3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) |
| 4 | f0bi 6706 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
| 5 | 3, 4 | bitrdi 287 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 = ∅)) |
| 6 | velsn 4592 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 ∈ {∅})) |
| 8 | 7 | eqrdv 2729 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 {csn 4576 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 |
| This theorem is referenced by: map0e 8806 hashmap 14342 ehl0base 25344 1arithidom 33500 repr0 34622 mpct 45244 rrxtopn0 46337 qndenserrnbl 46339 hoicvr 46592 ovn02 46612 ovnhoi 46647 ovnlecvr2 46654 hoiqssbl 46669 hoimbl 46675 0aryfvalel 48672 |
| Copyright terms: Public domain | W3C validator |