MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdm0 Structured version   Visualization version   GIF version

Theorem mapdm0 8774
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵m ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5249 . . . . 5 ∅ ∈ V
2 elmapg 8771 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 691 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 6713 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 287 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 = ∅))
6 velsn 4593 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
75, 6bitr4di 289 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 ∈ {∅}))
87eqrdv 2731 1 (𝐵𝑉 → (𝐵m ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  {csn 4577  wf 6484  (class class class)co 7354  m cmap 8758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-map 8760
This theorem is referenced by:  map0e  8814  hashmap  14346  ehl0base  25346  1arithidom  33511  repr0  34647  mpct  45325  rrxtopn0  46418  qndenserrnbl  46420  hoicvr  46673  ovn02  46693  ovnhoi  46728  ovnlecvr2  46735  hoiqssbl  46750  hoimbl  46756  0aryfvalel  48762
  Copyright terms: Public domain W3C validator