| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapdm0 | Structured version Visualization version GIF version | ||
| Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | elmapg 8771 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) | |
| 3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) |
| 4 | f0bi 6713 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
| 5 | 3, 4 | bitrdi 287 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 = ∅)) |
| 6 | velsn 4593 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 ∈ {∅})) |
| 8 | 7 | eqrdv 2731 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {csn 4577 ⟶wf 6484 (class class class)co 7354 ↑m cmap 8758 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-map 8760 |
| This theorem is referenced by: map0e 8814 hashmap 14346 ehl0base 25346 1arithidom 33511 repr0 34647 mpct 45325 rrxtopn0 46418 qndenserrnbl 46420 hoicvr 46673 ovn02 46693 ovnhoi 46728 ovnlecvr2 46735 hoiqssbl 46750 hoimbl 46756 0aryfvalel 48762 |
| Copyright terms: Public domain | W3C validator |