MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdm0 Structured version   Visualization version   GIF version

Theorem mapdm0 8900
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵m ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5325 . . . . 5 ∅ ∈ V
2 elmapg 8897 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 690 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 6804 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 287 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 = ∅))
6 velsn 4664 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
75, 6bitr4di 289 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 ∈ {∅}))
87eqrdv 2738 1 (𝐵𝑉 → (𝐵m ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {csn 4648  wf 6569  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886
This theorem is referenced by:  map0e  8940  hashmap  14484  ehl0base  25469  1arithidom  33530  repr0  34588  mpct  45108  rrxtopn0  46214  qndenserrnbl  46216  hoicvr  46469  ovn02  46489  ovnhoi  46524  ovnlecvr2  46531  hoiqssbl  46546  hoimbl  46552  0aryfvalel  48368
  Copyright terms: Public domain W3C validator