MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdm0 Structured version   Visualization version   GIF version

Theorem mapdm0 8613
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
Assertion
Ref Expression
mapdm0 (𝐵𝑉 → (𝐵m ∅) = {∅})

Proof of Theorem mapdm0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ex 5235 . . . . 5 ∅ ∈ V
2 elmapg 8611 . . . . 5 ((𝐵𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
31, 2mpan2 688 . . . 4 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓:∅⟶𝐵))
4 f0bi 6655 . . . 4 (𝑓:∅⟶𝐵𝑓 = ∅)
53, 4bitrdi 287 . . 3 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 = ∅))
6 velsn 4583 . . 3 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
75, 6bitr4di 289 . 2 (𝐵𝑉 → (𝑓 ∈ (𝐵m ∅) ↔ 𝑓 ∈ {∅}))
87eqrdv 2738 1 (𝐵𝑉 → (𝐵m ∅) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2110  Vcvv 3431  c0 4262  {csn 4567  wf 6428  (class class class)co 7271  m cmap 8598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-map 8600
This theorem is referenced by:  map0e  8653  hashmap  14148  ehl0base  24578  repr0  32587  mpct  42711  rrxtopn0  43805  qndenserrnbl  43807  hoicvr  44057  ovn02  44077  ovnhoi  44112  ovnlecvr2  44119  hoiqssbl  44134  hoimbl  44140  0aryfvalel  45949
  Copyright terms: Public domain W3C validator