| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapdm0 | Structured version Visualization version GIF version | ||
| Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | elmapg 8812 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) | |
| 3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) |
| 4 | f0bi 6743 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
| 5 | 3, 4 | bitrdi 287 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 = ∅)) |
| 6 | velsn 4605 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 ∈ {∅})) |
| 8 | 7 | eqrdv 2727 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: map0e 8855 hashmap 14400 ehl0base 25316 1arithidom 33508 repr0 34602 mpct 45195 rrxtopn0 46291 qndenserrnbl 46293 hoicvr 46546 ovn02 46566 ovnhoi 46601 ovnlecvr2 46608 hoiqssbl 46623 hoimbl 46629 0aryfvalel 48623 |
| Copyright terms: Public domain | W3C validator |