Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mapdm0 | Structured version Visualization version GIF version |
Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
Ref | Expression |
---|---|
mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5235 | . . . . 5 ⊢ ∅ ∈ V | |
2 | elmapg 8611 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) | |
3 | 1, 2 | mpan2 688 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) |
4 | f0bi 6655 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
5 | 3, 4 | bitrdi 287 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 = ∅)) |
6 | velsn 4583 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 ∈ {∅})) |
8 | 7 | eqrdv 2738 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∅c0 4262 {csn 4567 ⟶wf 6428 (class class class)co 7271 ↑m cmap 8598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-map 8600 |
This theorem is referenced by: map0e 8653 hashmap 14148 ehl0base 24578 repr0 32587 mpct 42711 rrxtopn0 43805 qndenserrnbl 43807 hoicvr 44057 ovn02 44077 ovnhoi 44112 ovnlecvr2 44119 hoiqssbl 44134 hoimbl 44140 0aryfvalel 45949 |
Copyright terms: Public domain | W3C validator |