| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapdm0 | Structured version Visualization version GIF version | ||
| Description: The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.) |
| Ref | Expression |
|---|---|
| mapdm0 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5265 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | elmapg 8815 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ∅ ∈ V) → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) | |
| 3 | 1, 2 | mpan2 691 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓:∅⟶𝐵)) |
| 4 | f0bi 6746 | . . . 4 ⊢ (𝑓:∅⟶𝐵 ↔ 𝑓 = ∅) | |
| 5 | 3, 4 | bitrdi 287 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 = ∅)) |
| 6 | velsn 4608 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 7 | 5, 6 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑓 ∈ (𝐵 ↑m ∅) ↔ 𝑓 ∈ {∅})) |
| 8 | 7 | eqrdv 2728 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ↑m ∅) = {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 {csn 4592 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 |
| This theorem is referenced by: map0e 8858 hashmap 14407 ehl0base 25323 1arithidom 33515 repr0 34609 mpct 45202 rrxtopn0 46298 qndenserrnbl 46300 hoicvr 46553 ovn02 46573 ovnhoi 46608 ovnlecvr2 46615 hoiqssbl 46630 hoimbl 46636 0aryfvalel 48627 |
| Copyright terms: Public domain | W3C validator |