MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0map0sn0 Structured version   Visualization version   GIF version

Theorem 0map0sn0 8488
Description: The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.)
Assertion
Ref Expression
0map0sn0 (∅ ↑m ∅) = {∅}

Proof of Theorem 0map0sn0
StepHypRef Expression
1 f0bi 6555 . . 3 (𝑓:∅⟶∅ ↔ 𝑓 = ∅)
21abbii 2803 . 2 {𝑓𝑓:∅⟶∅} = {𝑓𝑓 = ∅}
3 0ex 5172 . . 3 ∅ ∈ V
43, 3mapval 8442 . 2 (∅ ↑m ∅) = {𝑓𝑓:∅⟶∅}
5 df-sn 4514 . 2 {∅} = {𝑓𝑓 = ∅}
62, 4, 53eqtr4i 2771 1 (∅ ↑m ∅) = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  {cab 2716  c0 4209  {csn 4513  wf 6329  (class class class)co 7164  m cmap 8430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-map 8432
This theorem is referenced by:  efmndbas0  18165  symgvalstruct  18636
  Copyright terms: Public domain W3C validator