| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0map0sn0 | Structured version Visualization version GIF version | ||
| Description: The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| 0map0sn0 | ⊢ (∅ ↑m ∅) = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0bi 6743 | . . 3 ⊢ (𝑓:∅⟶∅ ↔ 𝑓 = ∅) | |
| 2 | 1 | abbii 2796 | . 2 ⊢ {𝑓 ∣ 𝑓:∅⟶∅} = {𝑓 ∣ 𝑓 = ∅} |
| 3 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3, 3 | mapval 8811 | . 2 ⊢ (∅ ↑m ∅) = {𝑓 ∣ 𝑓:∅⟶∅} |
| 5 | df-sn 4590 | . 2 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
| 6 | 2, 4, 5 | 3eqtr4i 2762 | 1 ⊢ (∅ ↑m ∅) = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ∅c0 4296 {csn 4589 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: efmndbas0 18818 symgvalstruct 19327 setc1ohomfval 49479 setc1ocofval 49480 |
| Copyright terms: Public domain | W3C validator |