MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0map0sn0 Structured version   Visualization version   GIF version

Theorem 0map0sn0 8924
Description: The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.)
Assertion
Ref Expression
0map0sn0 (∅ ↑m ∅) = {∅}

Proof of Theorem 0map0sn0
StepHypRef Expression
1 f0bi 6792 . . 3 (𝑓:∅⟶∅ ↔ 𝑓 = ∅)
21abbii 2807 . 2 {𝑓𝑓:∅⟶∅} = {𝑓𝑓 = ∅}
3 0ex 5313 . . 3 ∅ ∈ V
43, 3mapval 8877 . 2 (∅ ↑m ∅) = {𝑓𝑓:∅⟶∅}
5 df-sn 4632 . 2 {∅} = {𝑓𝑓 = ∅}
62, 4, 53eqtr4i 2773 1 (∅ ↑m ∅) = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  {cab 2712  c0 4339  {csn 4631  wf 6559  (class class class)co 7431  m cmap 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867
This theorem is referenced by:  efmndbas0  18917  symgvalstruct  19429  symgvalstructOLD  19430
  Copyright terms: Public domain W3C validator