MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0map0sn0 Structured version   Visualization version   GIF version

Theorem 0map0sn0 8904
Description: The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.)
Assertion
Ref Expression
0map0sn0 (∅ ↑m ∅) = {∅}

Proof of Theorem 0map0sn0
StepHypRef Expression
1 f0bi 6766 . . 3 (𝑓:∅⟶∅ ↔ 𝑓 = ∅)
21abbii 2803 . 2 {𝑓𝑓:∅⟶∅} = {𝑓𝑓 = ∅}
3 0ex 5282 . . 3 ∅ ∈ V
43, 3mapval 8857 . 2 (∅ ↑m ∅) = {𝑓𝑓:∅⟶∅}
5 df-sn 4607 . 2 {∅} = {𝑓𝑓 = ∅}
62, 4, 53eqtr4i 2769 1 (∅ ↑m ∅) = {∅}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2714  c0 4313  {csn 4606  wf 6532  (class class class)co 7410  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847
This theorem is referenced by:  efmndbas0  18874  symgvalstruct  19383  setc1ohomfval  49345  setc1ocofval  49346
  Copyright terms: Public domain W3C validator