| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0map0sn0 | Structured version Visualization version GIF version | ||
| Description: The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.) |
| Ref | Expression |
|---|---|
| 0map0sn0 | ⊢ (∅ ↑m ∅) = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0bi 6711 | . . 3 ⊢ (𝑓:∅⟶∅ ↔ 𝑓 = ∅) | |
| 2 | 1 | abbii 2800 | . 2 ⊢ {𝑓 ∣ 𝑓:∅⟶∅} = {𝑓 ∣ 𝑓 = ∅} |
| 3 | 0ex 5247 | . . 3 ⊢ ∅ ∈ V | |
| 4 | 3, 3 | mapval 8768 | . 2 ⊢ (∅ ↑m ∅) = {𝑓 ∣ 𝑓:∅⟶∅} |
| 5 | df-sn 4576 | . 2 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
| 6 | 2, 4, 5 | 3eqtr4i 2766 | 1 ⊢ (∅ ↑m ∅) = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 ∅c0 4282 {csn 4575 ⟶wf 6482 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 |
| This theorem is referenced by: efmndbas0 18801 symgvalstruct 19311 setc1ohomfval 49618 setc1ocofval 49619 |
| Copyright terms: Public domain | W3C validator |