Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0map0sn0 | Structured version Visualization version GIF version |
Description: The set of mappings of the empty set to the empty set is the singleton containing the empty set. (Contributed by AV, 31-Mar-2024.) |
Ref | Expression |
---|---|
0map0sn0 | ⊢ (∅ ↑m ∅) = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0bi 6555 | . . 3 ⊢ (𝑓:∅⟶∅ ↔ 𝑓 = ∅) | |
2 | 1 | abbii 2803 | . 2 ⊢ {𝑓 ∣ 𝑓:∅⟶∅} = {𝑓 ∣ 𝑓 = ∅} |
3 | 0ex 5172 | . . 3 ⊢ ∅ ∈ V | |
4 | 3, 3 | mapval 8442 | . 2 ⊢ (∅ ↑m ∅) = {𝑓 ∣ 𝑓:∅⟶∅} |
5 | df-sn 4514 | . 2 ⊢ {∅} = {𝑓 ∣ 𝑓 = ∅} | |
6 | 2, 4, 5 | 3eqtr4i 2771 | 1 ⊢ (∅ ↑m ∅) = {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 {cab 2716 ∅c0 4209 {csn 4513 ⟶wf 6329 (class class class)co 7164 ↑m cmap 8430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-map 8432 |
This theorem is referenced by: efmndbas0 18165 symgvalstruct 18636 |
Copyright terms: Public domain | W3C validator |