| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgr0 | Structured version Visualization version GIF version | ||
| Description: The null graph represented by an empty set is a simple graph. (Contributed by AV, 16-Oct-2020.) |
| Ref | Expression |
|---|---|
| usgr0 | ⊢ ∅ ∈ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10 6797 | . . 3 ⊢ ∅:∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2} | |
| 2 | dm0 5863 | . . . 4 ⊢ dom ∅ = ∅ | |
| 3 | f1eq2 6716 | . . . 4 ⊢ (dom ∅ = ∅ → (∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ∅:∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2})) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2} ↔ ∅:∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 5 | 1, 4 | mpbir 231 | . 2 ⊢ ∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2} |
| 6 | 0ex 5246 | . . 3 ⊢ ∅ ∈ V | |
| 7 | vtxval0 28984 | . . . . 5 ⊢ (Vtx‘∅) = ∅ | |
| 8 | 7 | eqcomi 2738 | . . . 4 ⊢ ∅ = (Vtx‘∅) |
| 9 | iedgval0 28985 | . . . . 5 ⊢ (iEdg‘∅) = ∅ | |
| 10 | 9 | eqcomi 2738 | . . . 4 ⊢ ∅ = (iEdg‘∅) |
| 11 | 8, 10 | isusgr 29098 | . . 3 ⊢ (∅ ∈ V → (∅ ∈ USGraph ↔ ∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2})) |
| 12 | 6, 11 | ax-mp 5 | . 2 ⊢ (∅ ∈ USGraph ↔ ∅:dom ∅–1-1→{𝑥 ∈ (𝒫 ∅ ∖ {∅}) ∣ (♯‘𝑥) = 2}) |
| 13 | 5, 12 | mpbir 231 | 1 ⊢ ∅ ∈ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 ∖ cdif 3900 ∅c0 4284 𝒫 cpw 4551 {csn 4577 dom cdm 5619 –1-1→wf1 6479 ‘cfv 6482 2c2 12183 ♯chash 14237 Vtxcvtx 28941 iEdgciedg 28942 USGraphcusgr 29094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 df-slot 17093 df-ndx 17105 df-base 17121 df-edgf 28934 df-vtx 28943 df-iedg 28944 df-usgr 29096 |
| This theorem is referenced by: cusgr0 29371 frgr0 30209 |
| Copyright terms: Public domain | W3C validator |