![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvfvrneq | Structured version Visualization version GIF version |
Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
Ref | Expression |
---|---|
f1ocnvfvrneq | β’ ((πΉ:π΄β1-1βπ΅ β§ (πΆ β ran πΉ β§ π· β ran πΉ)) β ((β‘πΉβπΆ) = (β‘πΉβπ·) β πΆ = π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f1orn 6844 | . . 3 β’ (πΉ:π΄β1-1βπ΅ β πΉ:π΄β1-1-ontoβran πΉ) | |
2 | f1ocnv 6845 | . . 3 β’ (πΉ:π΄β1-1-ontoβran πΉ β β‘πΉ:ran πΉβ1-1-ontoβπ΄) | |
3 | f1of1 6832 | . . 3 β’ (β‘πΉ:ran πΉβ1-1-ontoβπ΄ β β‘πΉ:ran πΉβ1-1βπ΄) | |
4 | f1veqaeq 7255 | . . . 4 β’ ((β‘πΉ:ran πΉβ1-1βπ΄ β§ (πΆ β ran πΉ β§ π· β ran πΉ)) β ((β‘πΉβπΆ) = (β‘πΉβπ·) β πΆ = π·)) | |
5 | 4 | ex 413 | . . 3 β’ (β‘πΉ:ran πΉβ1-1βπ΄ β ((πΆ β ran πΉ β§ π· β ran πΉ) β ((β‘πΉβπΆ) = (β‘πΉβπ·) β πΆ = π·))) |
6 | 1, 2, 3, 5 | 4syl 19 | . 2 β’ (πΉ:π΄β1-1βπ΅ β ((πΆ β ran πΉ β§ π· β ran πΉ) β ((β‘πΉβπΆ) = (β‘πΉβπ·) β πΆ = π·))) |
7 | 6 | imp 407 | 1 β’ ((πΉ:π΄β1-1βπ΅ β§ (πΆ β ran πΉ β§ π· β ran πΉ)) β ((β‘πΉβπΆ) = (β‘πΉβπ·) β πΆ = π·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β‘ccnv 5675 ran crn 5677 β1-1βwf1 6540 β1-1-ontoβwf1o 6542 βcfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |