| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfvrneq | Structured version Visualization version GIF version | ||
| Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
| Ref | Expression |
|---|---|
| f1ocnvfvrneq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f1orn 6774 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 2 | f1ocnv 6775 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 3 | f1of1 6762 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–1-1→𝐴) | |
| 4 | f1veqaeq 7190 | . . . 4 ⊢ ((◡𝐹:ran 𝐹–1-1→𝐴 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1→𝐴 → ((𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 6 | 1, 2, 3, 5 | 4syl 19 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ◡ccnv 5613 ran crn 5615 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: upgrimtrlslem2 47944 |
| Copyright terms: Public domain | W3C validator |