|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1ocnvfvrneq | Structured version Visualization version GIF version | ||
| Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) | 
| Ref | Expression | 
|---|---|
| f1ocnvfvrneq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1f1orn 6858 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 2 | f1ocnv 6859 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 3 | f1of1 6846 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–1-1→𝐴) | |
| 4 | f1veqaeq 7278 | . . . 4 ⊢ ((◡𝐹:ran 𝐹–1-1→𝐴 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1→𝐴 → ((𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷))) | 
| 6 | 1, 2, 3, 5 | 4syl 19 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷))) | 
| 7 | 6 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ◡ccnv 5683 ran crn 5685 –1-1→wf1 6557 –1-1-onto→wf1o 6559 ‘cfv 6560 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |