MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfvrneq Structured version   Visualization version   GIF version

Theorem f1ocnvfvrneq 7283
Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1ocnvfvrneq ((𝐹:𝐴–1-1→𝐡 ∧ (𝐢 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) β†’ ((β—‘πΉβ€˜πΆ) = (β—‘πΉβ€˜π·) β†’ 𝐢 = 𝐷))

Proof of Theorem f1ocnvfvrneq
StepHypRef Expression
1 f1f1orn 6844 . . 3 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴–1-1-ontoβ†’ran 𝐹)
2 f1ocnv 6845 . . 3 (𝐹:𝐴–1-1-ontoβ†’ran 𝐹 β†’ ◑𝐹:ran 𝐹–1-1-onto→𝐴)
3 f1of1 6832 . . 3 (◑𝐹:ran 𝐹–1-1-onto→𝐴 β†’ ◑𝐹:ran 𝐹–1-1→𝐴)
4 f1veqaeq 7255 . . . 4 ((◑𝐹:ran 𝐹–1-1→𝐴 ∧ (𝐢 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) β†’ ((β—‘πΉβ€˜πΆ) = (β—‘πΉβ€˜π·) β†’ 𝐢 = 𝐷))
54ex 413 . . 3 (◑𝐹:ran 𝐹–1-1→𝐴 β†’ ((𝐢 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) β†’ ((β—‘πΉβ€˜πΆ) = (β—‘πΉβ€˜π·) β†’ 𝐢 = 𝐷)))
61, 2, 3, 54syl 19 . 2 (𝐹:𝐴–1-1→𝐡 β†’ ((𝐢 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) β†’ ((β—‘πΉβ€˜πΆ) = (β—‘πΉβ€˜π·) β†’ 𝐢 = 𝐷)))
76imp 407 1 ((𝐹:𝐴–1-1→𝐡 ∧ (𝐢 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) β†’ ((β—‘πΉβ€˜πΆ) = (β—‘πΉβ€˜π·) β†’ 𝐢 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β—‘ccnv 5675  ran crn 5677  β€“1-1β†’wf1 6540  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator