MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfvrneq Structured version   Visualization version   GIF version

Theorem f1ocnvfvrneq 7044
Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1ocnvfvrneq ((𝐹:𝐴1-1𝐵 ∧ (𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1ocnvfvrneq
StepHypRef Expression
1 f1f1orn 6628 . . 3 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
2 f1ocnv 6629 . . 3 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
3 f1of1 6616 . . 3 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹1-1𝐴)
4 f1veqaeq 7017 . . . 4 ((𝐹:ran 𝐹1-1𝐴 ∧ (𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
54ex 415 . . 3 (𝐹:ran 𝐹1-1𝐴 → ((𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
61, 2, 3, 54syl 19 . 2 (𝐹:𝐴1-1𝐵 → ((𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
76imp 409 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  ccnv 5556  ran crn 5558  1-1wf1 6354  1-1-ontowf1o 6356  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator