| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfvrneq | Structured version Visualization version GIF version | ||
| Description: If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
| Ref | Expression |
|---|---|
| f1ocnvfvrneq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f1orn 6775 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 2 | f1ocnv 6776 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 3 | f1of1 6763 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–1-1→𝐴) | |
| 4 | f1veqaeq 7193 | . . . 4 ⊢ ((◡𝐹:ran 𝐹–1-1→𝐴 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) | |
| 5 | 4 | ex 412 | . . 3 ⊢ (◡𝐹:ran 𝐹–1-1→𝐴 → ((𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 6 | 1, 2, 3, 5 | 4syl 19 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 7 | 6 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ ran 𝐹 ∧ 𝐷 ∈ ran 𝐹)) → ((◡𝐹‘𝐶) = (◡𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ◡ccnv 5618 ran crn 5620 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: upgrimtrlslem2 47889 |
| Copyright terms: Public domain | W3C validator |