MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1 Structured version   Visualization version   GIF version

Theorem fcof1 7278
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)

Proof of Theorem fcof1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴𝐵)
2 simprr 770 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
32fveq2d 6886 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅‘(𝐹𝑥)) = (𝑅‘(𝐹𝑦)))
4 simpll 764 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝐴𝐵)
5 simprll 776 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
6 fvco3 6981 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
74, 5, 6syl2anc 583 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
8 simprlr 777 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
9 fvco3 6981 . . . . . . . 8 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
104, 8, 9syl2anc 583 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
113, 7, 103eqtr4d 2774 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = ((𝑅𝐹)‘𝑦))
12 simplr 766 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅𝐹) = ( I ↾ 𝐴))
1312fveq1d 6884 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
1412fveq1d 6884 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (( I ↾ 𝐴)‘𝑦))
1511, 13, 143eqtr3d 2772 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = (( I ↾ 𝐴)‘𝑦))
16 fvresi 7164 . . . . . 6 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
175, 16syl 17 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
18 fvresi 7164 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
198, 18syl 17 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
2015, 17, 193eqtr3d 2772 . . . 4 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
2120expr 456 . . 3 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2221ralrimivva 3192 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
23 dff13 7247 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
241, 22, 23sylanbrc 582 1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wral 3053   I cid 5564  cres 5669  ccom 5671  wf 6530  1-1wf1 6531  cfv 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fv 6542
This theorem is referenced by:  fcof1od  7285  psdmplcl  22034
  Copyright terms: Public domain W3C validator