MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1 Structured version   Visualization version   GIF version

Theorem fcof1 7139
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)

Proof of Theorem fcof1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴𝐵)
2 simprr 769 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝐹𝑥) = (𝐹𝑦))
32fveq2d 6760 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅‘(𝐹𝑥)) = (𝑅‘(𝐹𝑦)))
4 simpll 763 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝐹:𝐴𝐵)
5 simprll 775 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥𝐴)
6 fvco3 6849 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
74, 5, 6syl2anc 583 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (𝑅‘(𝐹𝑥)))
8 simprlr 776 . . . . . . . 8 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑦𝐴)
9 fvco3 6849 . . . . . . . 8 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
104, 8, 9syl2anc 583 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (𝑅‘(𝐹𝑦)))
113, 7, 103eqtr4d 2788 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = ((𝑅𝐹)‘𝑦))
12 simplr 765 . . . . . . 7 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (𝑅𝐹) = ( I ↾ 𝐴))
1312fveq1d 6758 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑥) = (( I ↾ 𝐴)‘𝑥))
1412fveq1d 6758 . . . . . 6 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → ((𝑅𝐹)‘𝑦) = (( I ↾ 𝐴)‘𝑦))
1511, 13, 143eqtr3d 2786 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = (( I ↾ 𝐴)‘𝑦))
16 fvresi 7027 . . . . . 6 (𝑥𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥)
175, 16syl 17 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑥) = 𝑥)
18 fvresi 7027 . . . . . 6 (𝑦𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦)
198, 18syl 17 . . . . 5 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → (( I ↾ 𝐴)‘𝑦) = 𝑦)
2015, 17, 193eqtr3d 2786 . . . 4 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝐹𝑥) = (𝐹𝑦))) → 𝑥 = 𝑦)
2120expr 456 . . 3 (((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
2221ralrimivva 3114 . 2 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
23 dff13 7109 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
241, 22, 23sylanbrc 582 1 ((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063   I cid 5479  cres 5582  ccom 5584  wf 6414  1-1wf1 6415  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426
This theorem is referenced by:  fcof1od  7146
  Copyright terms: Public domain W3C validator