| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴⟶𝐵) | 
| 2 |  | simprr 772 | . . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝐹‘𝑥) = (𝐹‘𝑦)) | 
| 3 | 2 | fveq2d 6909 | . . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑅‘(𝐹‘𝑥)) = (𝑅‘(𝐹‘𝑦))) | 
| 4 |  | simpll 766 | . . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝐹:𝐴⟶𝐵) | 
| 5 |  | simprll 778 | . . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 ∈ 𝐴) | 
| 6 |  | fvco3 7007 | . . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝑅 ∘ 𝐹)‘𝑥) = (𝑅‘(𝐹‘𝑥))) | 
| 7 | 4, 5, 6 | syl2anc 584 | . . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑥) = (𝑅‘(𝐹‘𝑥))) | 
| 8 |  | simprlr 779 | . . . . . . . 8
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑦 ∈ 𝐴) | 
| 9 |  | fvco3 7007 | . . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑦 ∈ 𝐴) → ((𝑅 ∘ 𝐹)‘𝑦) = (𝑅‘(𝐹‘𝑦))) | 
| 10 | 4, 8, 9 | syl2anc 584 | . . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑦) = (𝑅‘(𝐹‘𝑦))) | 
| 11 | 3, 7, 10 | 3eqtr4d 2786 | . . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑥) = ((𝑅 ∘ 𝐹)‘𝑦)) | 
| 12 |  | simplr 768 | . . . . . . 7
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) | 
| 13 | 12 | fveq1d 6907 | . . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑥) = (( I ↾ 𝐴)‘𝑥)) | 
| 14 | 12 | fveq1d 6907 | . . . . . 6
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → ((𝑅 ∘ 𝐹)‘𝑦) = (( I ↾ 𝐴)‘𝑦)) | 
| 15 | 11, 13, 14 | 3eqtr3d 2784 | . . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (( I ↾ 𝐴)‘𝑥) = (( I ↾ 𝐴)‘𝑦)) | 
| 16 |  | fvresi 7194 | . . . . . 6
⊢ (𝑥 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑥) = 𝑥) | 
| 17 | 5, 16 | syl 17 | . . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (( I ↾ 𝐴)‘𝑥) = 𝑥) | 
| 18 |  | fvresi 7194 | . . . . . 6
⊢ (𝑦 ∈ 𝐴 → (( I ↾ 𝐴)‘𝑦) = 𝑦) | 
| 19 | 8, 18 | syl 17 | . . . . 5
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → (( I ↾ 𝐴)‘𝑦) = 𝑦) | 
| 20 | 15, 17, 19 | 3eqtr3d 2784 | . . . 4
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝐹‘𝑥) = (𝐹‘𝑦))) → 𝑥 = 𝑦) | 
| 21 | 20 | expr 456 | . . 3
⊢ (((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 22 | 21 | ralrimivva 3201 | . 2
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) | 
| 23 |  | dff13 7276 | . 2
⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) | 
| 24 | 1, 22, 23 | sylanbrc 583 | 1
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑅 ∘ 𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴–1-1→𝐵) |