Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version |
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6712 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6700 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | 3 | ffvelrnda 6943 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ◡ccnv 5579 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1oiso2 7203 f1ocnvfv3 7251 dif1enlem 8905 rexdif1en 8906 dif1en 8907 uzrdglem 13605 uzrdgsuci 13608 fzennn 13616 cardfz 13618 fzfi 13620 iunmbl2 24626 f1otrg 27136 axcontlem10 27244 wlkiswwlks2lem5 28139 clwlkclwwlklem2a 28263 cnvbraval 30373 cnvbracl 30374 cycpmco2lem6 31300 cycpmco2 31302 mndpluscn 31778 ismtycnv 35887 rngoisocnv 36066 lautcnvclN 38029 lautcnvle 38030 lautcvr 38033 lautj 38034 lautm 38035 ltrncnvatb 38079 diacnvclN 38992 dihcnvcl 39212 dihlspsnat 39274 dihglblem6 39281 dochocss 39307 dochnoncon 39332 mapdcnvcl 39593 rmxyelxp 40650 isomuspgrlem1 45167 isomgrsym 45176 |
Copyright terms: Public domain | W3C validator |