| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version | ||
| Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6794 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6782 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | 3 | ffvelcdmda 7038 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5630 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: f1oiso2 7309 f1ocnvfv3 7364 dif1enlem 9097 dif1enlemOLD 9098 rexdif1en 9099 rexdif1enOLD 9100 dif1en 9101 dif1enOLD 9103 uzrdglem 13900 uzrdgsuci 13903 fzennn 13911 cardfz 13913 fzfi 13915 iunmbl2 25492 noseqrdglem 28240 noseqrdgsuc 28243 f1otrg 28852 axcontlem10 28954 wlkiswwlks2lem5 29854 clwlkclwwlklem2a 29978 cnvbraval 32090 cnvbracl 32091 cycpmco2lem6 33104 cycpmco2 33106 mndpluscn 33910 ismtycnv 37790 rngoisocnv 37969 lautcnvclN 40076 lautcnvle 40077 lautcvr 40080 lautj 40081 lautm 40082 ltrncnvatb 40126 diacnvclN 41039 dihcnvcl 41259 dihlspsnat 41321 dihglblem6 41328 dochocss 41354 dochnoncon 41379 mapdcnvcl 41640 rmxyelxp 42895 cantnfub 43304 isuspgrim0lem 47887 isuspgrim0 47888 upgrimwlklem2 47892 upgrimtrls 47900 uhgrimisgrgriclem 47924 clnbgrgrimlem 47927 uspgrlimlem3 47983 grlicsym 47999 imaf1homlem 49090 uptrar 49199 |
| Copyright terms: Public domain | W3C validator |