![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version |
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6874 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6862 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | 3 | ffvelcdmda 7118 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ◡ccnv 5699 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: f1oiso2 7388 f1ocnvfv3 7443 dif1enlem 9222 dif1enlemOLD 9223 rexdif1en 9224 rexdif1enOLD 9225 dif1en 9226 dif1enOLD 9228 uzrdglem 14008 uzrdgsuci 14011 fzennn 14019 cardfz 14021 fzfi 14023 iunmbl2 25611 noseqrdglem 28329 noseqrdgsuc 28332 f1otrg 28897 axcontlem10 29006 wlkiswwlks2lem5 29906 clwlkclwwlklem2a 30030 cnvbraval 32142 cnvbracl 32143 cycpmco2lem6 33124 cycpmco2 33126 mndpluscn 33872 ismtycnv 37762 rngoisocnv 37941 lautcnvclN 40045 lautcnvle 40046 lautcvr 40049 lautj 40050 lautm 40051 ltrncnvatb 40095 diacnvclN 41008 dihcnvcl 41228 dihlspsnat 41290 dihglblem6 41297 dochocss 41323 dochnoncon 41348 mapdcnvcl 41609 rmxyelxp 42869 cantnfub 43283 isuspgrim0lem 47755 isuspgrim0 47756 uspgrimprop 47757 uhgrimisgrgriclem 47782 clnbgrgrimlem 47785 uspgrlimlem3 47814 grlicsym 47830 |
Copyright terms: Public domain | W3C validator |