Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version |
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6619 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6607 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | 3 | ffvelrnda 6848 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ◡ccnv 5527 ⟶wf 6336 –1-1-onto→wf1o 6339 ‘cfv 6340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 |
This theorem is referenced by: f1oiso2 7105 f1ocnvfv3 7152 dif1enlem 8744 rexdif1en 8745 dif1en 8746 uzrdglem 13387 uzrdgsuci 13390 fzennn 13398 cardfz 13400 fzfi 13402 iunmbl2 24271 f1otrg 26778 axcontlem10 26880 wlkiswwlks2lem5 27772 clwlkclwwlklem2a 27896 cnvbraval 30006 cnvbracl 30007 cycpmco2lem6 30937 cycpmco2 30939 mndpluscn 31410 ismtycnv 35555 rngoisocnv 35734 lautcnvclN 37699 lautcnvle 37700 lautcvr 37703 lautj 37704 lautm 37705 ltrncnvatb 37749 diacnvclN 38662 dihcnvcl 38882 dihlspsnat 38944 dihglblem6 38951 dochocss 38977 dochnoncon 39002 mapdcnvcl 39263 rmxyelxp 40271 isomuspgrlem1 44771 isomgrsym 44780 |
Copyright terms: Public domain | W3C validator |