| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version | ||
| Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6830 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6818 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | 3 | ffvelcdmda 7074 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ◡ccnv 5653 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 |
| This theorem is referenced by: f1oiso2 7345 f1ocnvfv3 7400 dif1enlem 9170 dif1enlemOLD 9171 rexdif1en 9172 rexdif1enOLD 9173 dif1en 9174 dif1enOLD 9176 uzrdglem 13975 uzrdgsuci 13978 fzennn 13986 cardfz 13988 fzfi 13990 iunmbl2 25510 noseqrdglem 28251 noseqrdgsuc 28254 f1otrg 28850 axcontlem10 28952 wlkiswwlks2lem5 29855 clwlkclwwlklem2a 29979 cnvbraval 32091 cnvbracl 32092 cycpmco2lem6 33142 cycpmco2 33144 mndpluscn 33957 ismtycnv 37826 rngoisocnv 38005 lautcnvclN 40107 lautcnvle 40108 lautcvr 40111 lautj 40112 lautm 40113 ltrncnvatb 40157 diacnvclN 41070 dihcnvcl 41290 dihlspsnat 41352 dihglblem6 41359 dochocss 41385 dochnoncon 41410 mapdcnvcl 41671 rmxyelxp 42936 cantnfub 43345 isuspgrim0lem 47906 isuspgrim0 47907 upgrimwlklem2 47911 upgrimtrls 47919 uhgrimisgrgriclem 47943 clnbgrgrimlem 47946 uspgrlimlem3 48002 grlicsym 48018 imaf1homlem 49066 |
| Copyright terms: Public domain | W3C validator |