| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version | ||
| Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6776 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6764 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | 3 | ffvelcdmda 7018 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5618 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 |
| This theorem is referenced by: f1oiso2 7289 f1ocnvfv3 7344 dif1enlem 9073 rexdif1en 9074 dif1en 9075 uzrdglem 13864 uzrdgsuci 13867 fzennn 13875 cardfz 13877 fzfi 13879 iunmbl2 25456 noseqrdglem 28206 noseqrdgsuc 28209 f1otrg 28820 axcontlem10 28922 wlkiswwlks2lem5 29822 clwlkclwwlklem2a 29946 cnvbraval 32058 cnvbracl 32059 cycpmco2lem6 33082 cycpmco2 33084 mndpluscn 33909 ismtycnv 37802 rngoisocnv 37981 lautcnvclN 40087 lautcnvle 40088 lautcvr 40091 lautj 40092 lautm 40093 ltrncnvatb 40137 diacnvclN 41050 dihcnvcl 41270 dihlspsnat 41332 dihglblem6 41339 dochocss 41365 dochnoncon 41390 mapdcnvcl 41651 rmxyelxp 42905 cantnfub 43314 isuspgrim0lem 47897 isuspgrim0 47898 upgrimwlklem2 47902 upgrimtrls 47910 uhgrimisgrgriclem 47934 clnbgrgrimlem 47937 uspgrlimlem3 47994 grlicsym 48017 imaf1homlem 49112 uptrar 49221 |
| Copyright terms: Public domain | W3C validator |