Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version |
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6728 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6716 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | 3 | ffvelrnda 6961 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ◡ccnv 5588 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: f1oiso2 7223 f1ocnvfv3 7271 dif1enlem 8943 rexdif1en 8944 dif1en 8945 uzrdglem 13677 uzrdgsuci 13680 fzennn 13688 cardfz 13690 fzfi 13692 iunmbl2 24721 f1otrg 27232 axcontlem10 27341 wlkiswwlks2lem5 28238 clwlkclwwlklem2a 28362 cnvbraval 30472 cnvbracl 30473 cycpmco2lem6 31398 cycpmco2 31400 mndpluscn 31876 ismtycnv 35960 rngoisocnv 36139 lautcnvclN 38102 lautcnvle 38103 lautcvr 38106 lautj 38107 lautm 38108 ltrncnvatb 38152 diacnvclN 39065 dihcnvcl 39285 dihlspsnat 39347 dihglblem6 39354 dochocss 39380 dochnoncon 39405 mapdcnvcl 39666 rmxyelxp 40734 isomuspgrlem1 45279 isomgrsym 45288 |
Copyright terms: Public domain | W3C validator |