| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version | ||
| Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6775 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6763 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | 3 | ffvelcdmda 7017 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ◡ccnv 5613 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: f1oiso2 7286 f1ocnvfv3 7341 dif1enlem 9069 rexdif1en 9070 dif1en 9071 uzrdglem 13864 uzrdgsuci 13867 fzennn 13875 cardfz 13877 fzfi 13879 iunmbl2 25485 noseqrdglem 28235 noseqrdgsuc 28238 f1otrg 28849 axcontlem10 28951 wlkiswwlks2lem5 29851 clwlkclwwlklem2a 29978 cnvbraval 32090 cnvbracl 32091 cycpmco2lem6 33100 cycpmco2 33102 mndpluscn 33939 ismtycnv 37841 rngoisocnv 38020 lautcnvclN 40186 lautcnvle 40187 lautcvr 40190 lautj 40191 lautm 40192 ltrncnvatb 40236 diacnvclN 41149 dihcnvcl 41369 dihlspsnat 41431 dihglblem6 41438 dochocss 41464 dochnoncon 41489 mapdcnvcl 41750 rmxyelxp 43004 cantnfub 43413 isuspgrim0lem 47992 isuspgrim0 47993 upgrimwlklem2 47997 upgrimtrls 48005 uhgrimisgrgriclem 48029 clnbgrgrimlem 48032 uspgrlimlem3 48089 grlicsym 48112 imaf1homlem 49207 uptrar 49316 |
| Copyright terms: Public domain | W3C validator |