| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version | ||
| Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6815 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6803 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | 3 | ffvelcdmda 7059 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5640 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 |
| This theorem is referenced by: f1oiso2 7330 f1ocnvfv3 7385 dif1enlem 9126 dif1enlemOLD 9127 rexdif1en 9128 rexdif1enOLD 9129 dif1en 9130 dif1enOLD 9132 uzrdglem 13929 uzrdgsuci 13932 fzennn 13940 cardfz 13942 fzfi 13944 iunmbl2 25465 noseqrdglem 28206 noseqrdgsuc 28209 f1otrg 28805 axcontlem10 28907 wlkiswwlks2lem5 29810 clwlkclwwlklem2a 29934 cnvbraval 32046 cnvbracl 32047 cycpmco2lem6 33095 cycpmco2 33097 mndpluscn 33923 ismtycnv 37803 rngoisocnv 37982 lautcnvclN 40089 lautcnvle 40090 lautcvr 40093 lautj 40094 lautm 40095 ltrncnvatb 40139 diacnvclN 41052 dihcnvcl 41272 dihlspsnat 41334 dihglblem6 41341 dochocss 41367 dochnoncon 41392 mapdcnvcl 41653 rmxyelxp 42908 cantnfub 43317 isuspgrim0lem 47897 isuspgrim0 47898 upgrimwlklem2 47902 upgrimtrls 47910 uhgrimisgrgriclem 47934 clnbgrgrimlem 47937 uspgrlimlem3 47993 grlicsym 48009 imaf1homlem 49100 uptrar 49209 |
| Copyright terms: Public domain | W3C validator |