| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version | ||
| Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
| Ref | Expression |
|---|---|
| f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnv 6794 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
| 2 | f1of 6782 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
| 4 | 3 | ffvelcdmda 7038 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ◡ccnv 5630 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: f1oiso2 7309 f1ocnvfv3 7364 dif1enlem 9097 dif1enlemOLD 9098 rexdif1en 9099 rexdif1enOLD 9100 dif1en 9101 dif1enOLD 9103 uzrdglem 13898 uzrdgsuci 13901 fzennn 13909 cardfz 13911 fzfi 13913 iunmbl2 25491 noseqrdglem 28239 noseqrdgsuc 28242 f1otrg 28851 axcontlem10 28953 wlkiswwlks2lem5 29853 clwlkclwwlklem2a 29977 cnvbraval 32089 cnvbracl 32090 cycpmco2lem6 33103 cycpmco2 33105 mndpluscn 33909 ismtycnv 37789 rngoisocnv 37968 lautcnvclN 40075 lautcnvle 40076 lautcvr 40079 lautj 40080 lautm 40081 ltrncnvatb 40125 diacnvclN 41038 dihcnvcl 41258 dihlspsnat 41320 dihglblem6 41327 dochocss 41353 dochnoncon 41378 mapdcnvcl 41639 rmxyelxp 42894 cantnfub 43303 isuspgrim0lem 47886 isuspgrim0 47887 upgrimwlklem2 47891 upgrimtrls 47899 uhgrimisgrgriclem 47923 clnbgrgrimlem 47926 uspgrlimlem3 47982 grlicsym 47998 imaf1homlem 49089 uptrar 49198 |
| Copyright terms: Public domain | W3C validator |