MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvdm Structured version   Visualization version   GIF version

Theorem f1ocnvdm 7137
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
f1ocnvdm ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)

Proof of Theorem f1ocnvdm
StepHypRef Expression
1 f1ocnv 6712 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵1-1-onto𝐴)
2 f1of 6700 . . 3 (𝐹:𝐵1-1-onto𝐴𝐹:𝐵𝐴)
31, 2syl 17 . 2 (𝐹:𝐴1-1-onto𝐵𝐹:𝐵𝐴)
43ffvelrnda 6943 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ccnv 5579  wf 6414  1-1-ontowf1o 6417  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  f1oiso2  7203  f1ocnvfv3  7251  dif1enlem  8905  rexdif1en  8906  dif1en  8907  uzrdglem  13605  uzrdgsuci  13608  fzennn  13616  cardfz  13618  fzfi  13620  iunmbl2  24626  f1otrg  27136  axcontlem10  27244  wlkiswwlks2lem5  28139  clwlkclwwlklem2a  28263  cnvbraval  30373  cnvbracl  30374  cycpmco2lem6  31300  cycpmco2  31302  mndpluscn  31778  ismtycnv  35887  rngoisocnv  36066  lautcnvclN  38029  lautcnvle  38030  lautcvr  38033  lautj  38034  lautm  38035  ltrncnvatb  38079  diacnvclN  38992  dihcnvcl  39212  dihlspsnat  39274  dihglblem6  39281  dochocss  39307  dochnoncon  39332  mapdcnvcl  39593  rmxyelxp  40650  isomuspgrlem1  45167  isomgrsym  45176
  Copyright terms: Public domain W3C validator