![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1ocnvdm | Structured version Visualization version GIF version |
Description: The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ocnvdm | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 6861 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 6849 | . . 3 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | 3 | ffvelcdmda 7104 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 ◡ccnv 5688 ⟶wf 6559 –1-1-onto→wf1o 6562 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: f1oiso2 7372 f1ocnvfv3 7426 dif1enlem 9195 dif1enlemOLD 9196 rexdif1en 9197 rexdif1enOLD 9198 dif1en 9199 dif1enOLD 9201 uzrdglem 13995 uzrdgsuci 13998 fzennn 14006 cardfz 14008 fzfi 14010 iunmbl2 25606 noseqrdglem 28326 noseqrdgsuc 28329 f1otrg 28894 axcontlem10 29003 wlkiswwlks2lem5 29903 clwlkclwwlklem2a 30027 cnvbraval 32139 cnvbracl 32140 cycpmco2lem6 33134 cycpmco2 33136 mndpluscn 33887 ismtycnv 37789 rngoisocnv 37968 lautcnvclN 40071 lautcnvle 40072 lautcvr 40075 lautj 40076 lautm 40077 ltrncnvatb 40121 diacnvclN 41034 dihcnvcl 41254 dihlspsnat 41316 dihglblem6 41323 dochocss 41349 dochnoncon 41374 mapdcnvcl 41635 rmxyelxp 42901 cantnfub 43311 isuspgrim0lem 47809 isuspgrim0 47810 uspgrimprop 47811 uhgrimisgrgriclem 47836 clnbgrgrimlem 47839 uspgrlimlem3 47893 grlicsym 47909 |
Copyright terms: Public domain | W3C validator |