![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oexbi | Structured version Visualization version GIF version |
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.) |
Ref | Expression |
---|---|
f1oexbi | ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | cnvex 7948 | . . . 4 ⊢ ◡𝑓 ∈ V |
3 | f1ocnv 6861 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oeq1 6837 | . . . . 5 ⊢ (𝑔 = ◡𝑓 → (𝑔:𝐵–1-1-onto→𝐴 ↔ ◡𝑓:𝐵–1-1-onto→𝐴)) | |
5 | 4 | spcegv 3597 | . . . 4 ⊢ (◡𝑓 ∈ V → (◡𝑓:𝐵–1-1-onto→𝐴 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) |
6 | 2, 3, 5 | mpsyl 68 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
7 | 6 | exlimiv 1928 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
8 | vex 3482 | . . . . 5 ⊢ 𝑔 ∈ V | |
9 | 8 | cnvex 7948 | . . . 4 ⊢ ◡𝑔 ∈ V |
10 | f1ocnv 6861 | . . . 4 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
11 | f1oeq1 6837 | . . . . 5 ⊢ (𝑓 = ◡𝑔 → (𝑓:𝐴–1-1-onto→𝐵 ↔ ◡𝑔:𝐴–1-1-onto→𝐵)) | |
12 | 11 | spcegv 3597 | . . . 4 ⊢ (◡𝑔 ∈ V → (◡𝑔:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
13 | 9, 10, 12 | mpsyl 68 | . . 3 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
14 | 13 | exlimiv 1928 | . 2 ⊢ (∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
15 | 7, 14 | impbii 209 | 1 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ◡ccnv 5688 –1-1-onto→wf1o 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 |
This theorem is referenced by: rusgrnumwlkg 30007 f1ocnt 32810 |
Copyright terms: Public domain | W3C validator |