MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oexbi Structured version   Visualization version   GIF version

Theorem f1oexbi 7915
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
Assertion
Ref Expression
f1oexbi (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem f1oexbi
StepHypRef Expression
1 vex 3472 . . . . 5 𝑓 ∈ V
21cnvex 7912 . . . 4 𝑓 ∈ V
3 f1ocnv 6838 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oeq1 6814 . . . . 5 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
54spcegv 3581 . . . 4 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
62, 3, 5mpsyl 68 . . 3 (𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
76exlimiv 1925 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 vex 3472 . . . . 5 𝑔 ∈ V
98cnvex 7912 . . . 4 𝑔 ∈ V
10 f1ocnv 6838 . . . 4 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
11 f1oeq1 6814 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
1211spcegv 3581 . . . 4 (𝑔 ∈ V → (𝑔:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
139, 10, 12mpsyl 68 . . 3 (𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
1413exlimiv 1925 . 2 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
157, 14impbii 208 1 (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1773  wcel 2098  Vcvv 3468  ccnv 5668  1-1-ontowf1o 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543
This theorem is referenced by:  rusgrnumwlkg  29735  f1ocnt  32517
  Copyright terms: Public domain W3C validator