MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oexbi Structured version   Visualization version   GIF version

Theorem f1oexbi 7858
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
Assertion
Ref Expression
f1oexbi (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem f1oexbi
StepHypRef Expression
1 vex 3440 . . . . 5 𝑓 ∈ V
21cnvex 7855 . . . 4 𝑓 ∈ V
3 f1ocnv 6775 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oeq1 6751 . . . . 5 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
54spcegv 3547 . . . 4 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
62, 3, 5mpsyl 68 . . 3 (𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
76exlimiv 1931 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 vex 3440 . . . . 5 𝑔 ∈ V
98cnvex 7855 . . . 4 𝑔 ∈ V
10 f1ocnv 6775 . . . 4 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
11 f1oeq1 6751 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
1211spcegv 3547 . . . 4 (𝑔 ∈ V → (𝑔:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
139, 10, 12mpsyl 68 . . 3 (𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
1413exlimiv 1931 . 2 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
157, 14impbii 209 1 (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2111  Vcvv 3436  ccnv 5613  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  rusgrnumwlkg  29958  f1ocnt  32782
  Copyright terms: Public domain W3C validator