MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oexbi Structured version   Visualization version   GIF version

Theorem f1oexbi 7951
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
Assertion
Ref Expression
f1oexbi (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem f1oexbi
StepHypRef Expression
1 vex 3482 . . . . 5 𝑓 ∈ V
21cnvex 7948 . . . 4 𝑓 ∈ V
3 f1ocnv 6861 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oeq1 6837 . . . . 5 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
54spcegv 3597 . . . 4 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
62, 3, 5mpsyl 68 . . 3 (𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
76exlimiv 1928 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 vex 3482 . . . . 5 𝑔 ∈ V
98cnvex 7948 . . . 4 𝑔 ∈ V
10 f1ocnv 6861 . . . 4 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
11 f1oeq1 6837 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
1211spcegv 3597 . . . 4 (𝑔 ∈ V → (𝑔:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
139, 10, 12mpsyl 68 . . 3 (𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
1413exlimiv 1928 . 2 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
157, 14impbii 209 1 (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1776  wcel 2106  Vcvv 3478  ccnv 5688  1-1-ontowf1o 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570
This theorem is referenced by:  rusgrnumwlkg  30007  f1ocnt  32810
  Copyright terms: Public domain W3C validator