MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oexbi Structured version   Visualization version   GIF version

Theorem f1oexbi 7968
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.)
Assertion
Ref Expression
f1oexbi (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔

Proof of Theorem f1oexbi
StepHypRef Expression
1 vex 3492 . . . . 5 𝑓 ∈ V
21cnvex 7965 . . . 4 𝑓 ∈ V
3 f1ocnv 6874 . . . 4 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
4 f1oeq1 6850 . . . . 5 (𝑔 = 𝑓 → (𝑔:𝐵1-1-onto𝐴𝑓:𝐵1-1-onto𝐴))
54spcegv 3610 . . . 4 (𝑓 ∈ V → (𝑓:𝐵1-1-onto𝐴 → ∃𝑔 𝑔:𝐵1-1-onto𝐴))
62, 3, 5mpsyl 68 . . 3 (𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
76exlimiv 1929 . 2 (∃𝑓 𝑓:𝐴1-1-onto𝐵 → ∃𝑔 𝑔:𝐵1-1-onto𝐴)
8 vex 3492 . . . . 5 𝑔 ∈ V
98cnvex 7965 . . . 4 𝑔 ∈ V
10 f1ocnv 6874 . . . 4 (𝑔:𝐵1-1-onto𝐴𝑔:𝐴1-1-onto𝐵)
11 f1oeq1 6850 . . . . 5 (𝑓 = 𝑔 → (𝑓:𝐴1-1-onto𝐵𝑔:𝐴1-1-onto𝐵))
1211spcegv 3610 . . . 4 (𝑔 ∈ V → (𝑔:𝐴1-1-onto𝐵 → ∃𝑓 𝑓:𝐴1-1-onto𝐵))
139, 10, 12mpsyl 68 . . 3 (𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
1413exlimiv 1929 . 2 (∃𝑔 𝑔:𝐵1-1-onto𝐴 → ∃𝑓 𝑓:𝐴1-1-onto𝐵)
157, 14impbii 209 1 (∃𝑓 𝑓:𝐴1-1-onto𝐵 ↔ ∃𝑔 𝑔:𝐵1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1777  wcel 2108  Vcvv 3488  ccnv 5699  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  rusgrnumwlkg  30010  f1ocnt  32807
  Copyright terms: Public domain W3C validator