![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oexbi | Structured version Visualization version GIF version |
Description: There is a one-to-one onto function from a set to a second set iff there is a one-to-one onto function from the second set to the first set. (Contributed by Alexander van der Vekens, 30-Sep-2018.) |
Ref | Expression |
---|---|
f1oexbi | ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | cnvex 7965 | . . . 4 ⊢ ◡𝑓 ∈ V |
3 | f1ocnv 6874 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ◡𝑓:𝐵–1-1-onto→𝐴) | |
4 | f1oeq1 6850 | . . . . 5 ⊢ (𝑔 = ◡𝑓 → (𝑔:𝐵–1-1-onto→𝐴 ↔ ◡𝑓:𝐵–1-1-onto→𝐴)) | |
5 | 4 | spcegv 3610 | . . . 4 ⊢ (◡𝑓 ∈ V → (◡𝑓:𝐵–1-1-onto→𝐴 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴)) |
6 | 2, 3, 5 | mpsyl 68 | . . 3 ⊢ (𝑓:𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
7 | 6 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 → ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
8 | vex 3492 | . . . . 5 ⊢ 𝑔 ∈ V | |
9 | 8 | cnvex 7965 | . . . 4 ⊢ ◡𝑔 ∈ V |
10 | f1ocnv 6874 | . . . 4 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ◡𝑔:𝐴–1-1-onto→𝐵) | |
11 | f1oeq1 6850 | . . . . 5 ⊢ (𝑓 = ◡𝑔 → (𝑓:𝐴–1-1-onto→𝐵 ↔ ◡𝑔:𝐴–1-1-onto→𝐵)) | |
12 | 11 | spcegv 3610 | . . . 4 ⊢ (◡𝑔 ∈ V → (◡𝑔:𝐴–1-1-onto→𝐵 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵)) |
13 | 9, 10, 12 | mpsyl 68 | . . 3 ⊢ (𝑔:𝐵–1-1-onto→𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
14 | 13 | exlimiv 1929 | . 2 ⊢ (∃𝑔 𝑔:𝐵–1-1-onto→𝐴 → ∃𝑓 𝑓:𝐴–1-1-onto→𝐵) |
15 | 7, 14 | impbii 209 | 1 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→𝐵 ↔ ∃𝑔 𝑔:𝐵–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ◡ccnv 5699 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: rusgrnumwlkg 30010 f1ocnt 32807 |
Copyright terms: Public domain | W3C validator |