MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1un Structured version   Visualization version   GIF version

Theorem f1un 6820
Description: The union of two one-to-one functions with disjoint domains and codomains. (Contributed by BTernaryTau, 3-Dec-2024.)
Assertion
Ref Expression
f1un (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))

Proof of Theorem f1un
StepHypRef Expression
1 f1f 6756 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6696 . . 3 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 f1f 6756 . . . 4 (𝐺:𝐶1-1𝐷𝐺:𝐶𝐷)
43frnd 6696 . . 3 (𝐺:𝐶1-1𝐷 → ran 𝐺𝐷)
5 unss12 4151 . . 3 ((ran 𝐹𝐵 ∧ ran 𝐺𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷))
62, 4, 5syl2an 596 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷))
7 f1f1orn 6811 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
8 f1f1orn 6811 . . . . 5 (𝐺:𝐶1-1𝐷𝐺:𝐶1-1-onto→ran 𝐺)
97, 8anim12i 613 . . . 4 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐹:𝐴1-1-onto→ran 𝐹𝐺:𝐶1-1-onto→ran 𝐺))
10 simprl 770 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) = ∅)
11 ss2in 4208 . . . . . . . 8 ((ran 𝐹𝐵 ∧ ran 𝐺𝐷) → (ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷))
122, 4, 11syl2an 596 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷))
13 sseq0 4366 . . . . . . 7 (((ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1412, 13sylan 580 . . . . . 6 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1514adantrl 716 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1610, 15jca 511 . . . 4 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → ((𝐴𝐶) = ∅ ∧ (ran 𝐹 ∩ ran 𝐺) = ∅))
17 f1oun 6819 . . . 4 (((𝐹:𝐴1-1-onto→ran 𝐹𝐺:𝐶1-1-onto→ran 𝐺) ∧ ((𝐴𝐶) = ∅ ∧ (ran 𝐹 ∩ ran 𝐺) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺))
189, 16, 17syl2an2r 685 . . 3 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺))
19 f1of1 6799 . . 3 ((𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺) → (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺))
2018, 19syl 17 . 2 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺))
21 f1ss 6761 . . 3 (((𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
2221ancoms 458 . 2 (((ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷) ∧ (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
236, 20, 22syl2an2r 685 1 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3912  cin 3913  wss 3914  c0 4296  ran crn 5639  1-1wf1 6508  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  undom  9029
  Copyright terms: Public domain W3C validator