MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1un Structured version   Visualization version   GIF version

Theorem f1un 6854
Description: The union of two one-to-one functions with disjoint domains and codomains. (Contributed by BTernaryTau, 3-Dec-2024.)
Assertion
Ref Expression
f1un (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))

Proof of Theorem f1un
StepHypRef Expression
1 f1f 6789 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6727 . . 3 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 f1f 6789 . . . 4 (𝐺:𝐶1-1𝐷𝐺:𝐶𝐷)
43frnd 6727 . . 3 (𝐺:𝐶1-1𝐷 → ran 𝐺𝐷)
5 unss12 4182 . . 3 ((ran 𝐹𝐵 ∧ ran 𝐺𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷))
62, 4, 5syl2an 594 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷))
7 f1f1orn 6845 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
8 f1f1orn 6845 . . . . 5 (𝐺:𝐶1-1𝐷𝐺:𝐶1-1-onto→ran 𝐺)
97, 8anim12i 611 . . . 4 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐹:𝐴1-1-onto→ran 𝐹𝐺:𝐶1-1-onto→ran 𝐺))
10 simprl 769 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) = ∅)
11 ss2in 4237 . . . . . . . 8 ((ran 𝐹𝐵 ∧ ran 𝐺𝐷) → (ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷))
122, 4, 11syl2an 594 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷))
13 sseq0 4399 . . . . . . 7 (((ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1412, 13sylan 578 . . . . . 6 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1514adantrl 714 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1610, 15jca 510 . . . 4 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → ((𝐴𝐶) = ∅ ∧ (ran 𝐹 ∩ ran 𝐺) = ∅))
17 f1oun 6853 . . . 4 (((𝐹:𝐴1-1-onto→ran 𝐹𝐺:𝐶1-1-onto→ran 𝐺) ∧ ((𝐴𝐶) = ∅ ∧ (ran 𝐹 ∩ ran 𝐺) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺))
189, 16, 17syl2an2r 683 . . 3 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺))
19 f1of1 6833 . . 3 ((𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺) → (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺))
2018, 19syl 17 . 2 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺))
21 f1ss 6794 . . 3 (((𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
2221ancoms 457 . 2 (((ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷) ∧ (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
236, 20, 22syl2an2r 683 1 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  cun 3946  cin 3947  wss 3948  c0 4324  ran crn 5675  1-1wf1 6542  1-1-ontowf1o 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3421  df-v 3466  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4325  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552
This theorem is referenced by:  undom  9088
  Copyright terms: Public domain W3C validator