MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1un Structured version   Visualization version   GIF version

Theorem f1un 6773
Description: The union of two one-to-one functions with disjoint domains and codomains. (Contributed by BTernaryTau, 3-Dec-2024.)
Assertion
Ref Expression
f1un (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))

Proof of Theorem f1un
StepHypRef Expression
1 f1f 6707 . . . 4 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6645 . . 3 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 f1f 6707 . . . 4 (𝐺:𝐶1-1𝐷𝐺:𝐶𝐷)
43frnd 6645 . . 3 (𝐺:𝐶1-1𝐷 → ran 𝐺𝐷)
5 unss12 4127 . . 3 ((ran 𝐹𝐵 ∧ ran 𝐺𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷))
62, 4, 5syl2an 596 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷))
7 f1f1orn 6764 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
8 f1f1orn 6764 . . . . 5 (𝐺:𝐶1-1𝐷𝐺:𝐶1-1-onto→ran 𝐺)
97, 8anim12i 613 . . . 4 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (𝐹:𝐴1-1-onto→ran 𝐹𝐺:𝐶1-1-onto→ran 𝐺))
10 simprl 768 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐴𝐶) = ∅)
11 ss2in 4181 . . . . . . . 8 ((ran 𝐹𝐵 ∧ ran 𝐺𝐷) → (ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷))
122, 4, 11syl2an 596 . . . . . . 7 ((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) → (ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷))
13 sseq0 4344 . . . . . . 7 (((ran 𝐹 ∩ ran 𝐺) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1412, 13sylan 580 . . . . . 6 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1514adantrl 713 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (ran 𝐹 ∩ ran 𝐺) = ∅)
1610, 15jca 512 . . . 4 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → ((𝐴𝐶) = ∅ ∧ (ran 𝐹 ∩ ran 𝐺) = ∅))
17 f1oun 6772 . . . 4 (((𝐹:𝐴1-1-onto→ran 𝐹𝐺:𝐶1-1-onto→ran 𝐺) ∧ ((𝐴𝐶) = ∅ ∧ (ran 𝐹 ∩ ran 𝐺) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺))
189, 16, 17syl2an2r 682 . . 3 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺))
19 f1of1 6752 . . 3 ((𝐹𝐺):(𝐴𝐶)–1-1-onto→(ran 𝐹 ∪ ran 𝐺) → (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺))
2018, 19syl 17 . 2 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺))
21 f1ss 6713 . . 3 (((𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺) ∧ (ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
2221ancoms 459 . 2 (((ran 𝐹 ∪ ran 𝐺) ⊆ (𝐵𝐷) ∧ (𝐹𝐺):(𝐴𝐶)–1-1→(ran 𝐹 ∪ ran 𝐺)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
236, 20, 22syl2an2r 682 1 (((𝐹:𝐴1-1𝐵𝐺:𝐶1-1𝐷) ∧ ((𝐴𝐶) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝐹𝐺):(𝐴𝐶)–1-1→(𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  cun 3895  cin 3896  wss 3897  c0 4267  ran crn 5608  1-1wf1 6462  1-1-ontowf1o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-br 5088  df-opab 5150  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472
This theorem is referenced by:  undom  8901
  Copyright terms: Public domain W3C validator