MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   GIF version

Theorem undom 9003
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 4-Dec-2024.)
Assertion
Ref Expression
undom (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 undif2 4436 . 2 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
2 reldom 8889 . . . . . 6 Rel ≼
32brrelex2i 5689 . . . . 5 (𝐴𝐵𝐵 ∈ V)
42brrelex2i 5689 . . . . 5 (𝐶𝐷𝐷 ∈ V)
5 unexg 7683 . . . . 5 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
63, 4, 5syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → (𝐵𝐷) ∈ V)
76adantr 481 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ∈ V)
8 brdomi 8898 . . . . 5 (𝐴𝐵 → ∃𝑥 𝑥:𝐴1-1𝐵)
9 brdomi 8898 . . . . 5 (𝐶𝐷 → ∃𝑦 𝑦:𝐶1-1𝐷)
10 exdistrv 1959 . . . . . 6 (∃𝑥𝑦(𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ↔ (∃𝑥 𝑥:𝐴1-1𝐵 ∧ ∃𝑦 𝑦:𝐶1-1𝐷))
11 disjdif 4431 . . . . . . . . . 10 (𝐴 ∩ (𝐶𝐴)) = ∅
12 difss 4091 . . . . . . . . . . . 12 (𝐶𝐴) ⊆ 𝐶
13 f1ssres 6746 . . . . . . . . . . . 12 ((𝑦:𝐶1-1𝐷 ∧ (𝐶𝐴) ⊆ 𝐶) → (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷)
1412, 13mpan2 689 . . . . . . . . . . 11 (𝑦:𝐶1-1𝐷 → (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷)
15 f1un 6804 . . . . . . . . . . 11 (((𝑥:𝐴1-1𝐵 ∧ (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
1614, 15sylanl2 679 . . . . . . . . . 10 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
1711, 16mpanr1 701 . . . . . . . . 9 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
18 vex 3449 . . . . . . . . . . . 12 𝑥 ∈ V
19 vex 3449 . . . . . . . . . . . . 13 𝑦 ∈ V
2019resex 5985 . . . . . . . . . . . 12 (𝑦 ↾ (𝐶𝐴)) ∈ V
2118, 20unex 7680 . . . . . . . . . . 11 (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))) ∈ V
22 f1dom3g 8907 . . . . . . . . . . 11 (((𝑥 ∪ (𝑦 ↾ (𝐶𝐴))) ∈ V ∧ (𝐵𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷)) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
2321, 22mp3an1 1448 . . . . . . . . . 10 (((𝐵𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷)) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
2423expcom 414 . . . . . . . . 9 ((𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
2517, 24syl 17 . . . . . . . 8 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
2625ex 413 . . . . . . 7 ((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
2726exlimivv 1935 . . . . . 6 (∃𝑥𝑦(𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
2810, 27sylbir 234 . . . . 5 ((∃𝑥 𝑥:𝐴1-1𝐵 ∧ ∃𝑦 𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
298, 9, 28syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
3029imp 407 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
317, 30mpd 15 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
321, 31eqbrtrrid 5141 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cres 5635  1-1wf1 6493  cdom 8881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-dom 8885
This theorem is referenced by:  domunsncan  9016  sucdom2OLD  9026  domunsn  9071  sucdom2  9150  unxpdom2  9198  sucxpdom  9199  fodomfi  9269  undjudom  10103  djudom1  10118
  Copyright terms: Public domain W3C validator