| Step | Hyp | Ref
| Expression |
| 1 | | undif2 4457 |
. 2
⊢ (𝐴 ∪ (𝐶 ∖ 𝐴)) = (𝐴 ∪ 𝐶) |
| 2 | | reldom 8970 |
. . . . . 6
⊢ Rel
≼ |
| 3 | 2 | brrelex2i 5716 |
. . . . 5
⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
| 4 | 2 | brrelex2i 5716 |
. . . . 5
⊢ (𝐶 ≼ 𝐷 → 𝐷 ∈ V) |
| 5 | | unexg 7742 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵 ∪ 𝐷) ∈ V) |
| 6 | 3, 4, 5 | syl2an 596 |
. . . 4
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) → (𝐵 ∪ 𝐷) ∈ V) |
| 7 | 6 | adantr 480 |
. . 3
⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐵 ∪ 𝐷) ∈ V) |
| 8 | | brdomi 8978 |
. . . . 5
⊢ (𝐴 ≼ 𝐵 → ∃𝑥 𝑥:𝐴–1-1→𝐵) |
| 9 | | brdomi 8978 |
. . . . 5
⊢ (𝐶 ≼ 𝐷 → ∃𝑦 𝑦:𝐶–1-1→𝐷) |
| 10 | | exdistrv 1955 |
. . . . . 6
⊢
(∃𝑥∃𝑦(𝑥:𝐴–1-1→𝐵 ∧ 𝑦:𝐶–1-1→𝐷) ↔ (∃𝑥 𝑥:𝐴–1-1→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1→𝐷)) |
| 11 | | disjdif 4452 |
. . . . . . . . . 10
⊢ (𝐴 ∩ (𝐶 ∖ 𝐴)) = ∅ |
| 12 | | difss 4116 |
. . . . . . . . . . . 12
⊢ (𝐶 ∖ 𝐴) ⊆ 𝐶 |
| 13 | | f1ssres 6786 |
. . . . . . . . . . . 12
⊢ ((𝑦:𝐶–1-1→𝐷 ∧ (𝐶 ∖ 𝐴) ⊆ 𝐶) → (𝑦 ↾ (𝐶 ∖ 𝐴)):(𝐶 ∖ 𝐴)–1-1→𝐷) |
| 14 | 12, 13 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝑦:𝐶–1-1→𝐷 → (𝑦 ↾ (𝐶 ∖ 𝐴)):(𝐶 ∖ 𝐴)–1-1→𝐷) |
| 15 | | f1un 6843 |
. . . . . . . . . . 11
⊢ (((𝑥:𝐴–1-1→𝐵 ∧ (𝑦 ↾ (𝐶 ∖ 𝐴)):(𝐶 ∖ 𝐴)–1-1→𝐷) ∧ ((𝐴 ∩ (𝐶 ∖ 𝐴)) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))):(𝐴 ∪ (𝐶 ∖ 𝐴))–1-1→(𝐵 ∪ 𝐷)) |
| 16 | 14, 15 | sylanl2 681 |
. . . . . . . . . 10
⊢ (((𝑥:𝐴–1-1→𝐵 ∧ 𝑦:𝐶–1-1→𝐷) ∧ ((𝐴 ∩ (𝐶 ∖ 𝐴)) = ∅ ∧ (𝐵 ∩ 𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))):(𝐴 ∪ (𝐶 ∖ 𝐴))–1-1→(𝐵 ∪ 𝐷)) |
| 17 | 11, 16 | mpanr1 703 |
. . . . . . . . 9
⊢ (((𝑥:𝐴–1-1→𝐵 ∧ 𝑦:𝐶–1-1→𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))):(𝐴 ∪ (𝐶 ∖ 𝐴))–1-1→(𝐵 ∪ 𝐷)) |
| 18 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 19 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
| 20 | 19 | resex 6021 |
. . . . . . . . . . . 12
⊢ (𝑦 ↾ (𝐶 ∖ 𝐴)) ∈ V |
| 21 | 18, 20 | unex 7743 |
. . . . . . . . . . 11
⊢ (𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))) ∈ V |
| 22 | | f1dom3g 8987 |
. . . . . . . . . . 11
⊢ (((𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))) ∈ V ∧ (𝐵 ∪ 𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))):(𝐴 ∪ (𝐶 ∖ 𝐴))–1-1→(𝐵 ∪ 𝐷)) → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)) |
| 23 | 21, 22 | mp3an1 1450 |
. . . . . . . . . 10
⊢ (((𝐵 ∪ 𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))):(𝐴 ∪ (𝐶 ∖ 𝐴))–1-1→(𝐵 ∪ 𝐷)) → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)) |
| 24 | 23 | expcom 413 |
. . . . . . . . 9
⊢ ((𝑥 ∪ (𝑦 ↾ (𝐶 ∖ 𝐴))):(𝐴 ∪ (𝐶 ∖ 𝐴))–1-1→(𝐵 ∪ 𝐷) → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷))) |
| 25 | 17, 24 | syl 17 |
. . . . . . . 8
⊢ (((𝑥:𝐴–1-1→𝐵 ∧ 𝑦:𝐶–1-1→𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷))) |
| 26 | 25 | ex 412 |
. . . . . . 7
⊢ ((𝑥:𝐴–1-1→𝐵 ∧ 𝑦:𝐶–1-1→𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)))) |
| 27 | 26 | exlimivv 1932 |
. . . . . 6
⊢
(∃𝑥∃𝑦(𝑥:𝐴–1-1→𝐵 ∧ 𝑦:𝐶–1-1→𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)))) |
| 28 | 10, 27 | sylbir 235 |
. . . . 5
⊢
((∃𝑥 𝑥:𝐴–1-1→𝐵 ∧ ∃𝑦 𝑦:𝐶–1-1→𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)))) |
| 29 | 8, 9, 28 | syl2an 596 |
. . . 4
⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) → ((𝐵 ∩ 𝐷) = ∅ → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)))) |
| 30 | 29 | imp 406 |
. . 3
⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → ((𝐵 ∪ 𝐷) ∈ V → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷))) |
| 31 | 7, 30 | mpd 15 |
. 2
⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ (𝐶 ∖ 𝐴)) ≼ (𝐵 ∪ 𝐷)) |
| 32 | 1, 31 | eqbrtrrid 5160 |
1
⊢ (((𝐴 ≼ 𝐵 ∧ 𝐶 ≼ 𝐷) ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼ (𝐵 ∪ 𝐷)) |