MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   GIF version

Theorem undom 9033
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 4-Dec-2024.)
Assertion
Ref Expression
undom (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 undif2 4443 . 2 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
2 reldom 8927 . . . . . 6 Rel ≼
32brrelex2i 5698 . . . . 5 (𝐴𝐵𝐵 ∈ V)
42brrelex2i 5698 . . . . 5 (𝐶𝐷𝐷 ∈ V)
5 unexg 7722 . . . . 5 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
63, 4, 5syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → (𝐵𝐷) ∈ V)
76adantr 480 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ∈ V)
8 brdomi 8934 . . . . 5 (𝐴𝐵 → ∃𝑥 𝑥:𝐴1-1𝐵)
9 brdomi 8934 . . . . 5 (𝐶𝐷 → ∃𝑦 𝑦:𝐶1-1𝐷)
10 exdistrv 1955 . . . . . 6 (∃𝑥𝑦(𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ↔ (∃𝑥 𝑥:𝐴1-1𝐵 ∧ ∃𝑦 𝑦:𝐶1-1𝐷))
11 disjdif 4438 . . . . . . . . . 10 (𝐴 ∩ (𝐶𝐴)) = ∅
12 difss 4102 . . . . . . . . . . . 12 (𝐶𝐴) ⊆ 𝐶
13 f1ssres 6766 . . . . . . . . . . . 12 ((𝑦:𝐶1-1𝐷 ∧ (𝐶𝐴) ⊆ 𝐶) → (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷)
1412, 13mpan2 691 . . . . . . . . . . 11 (𝑦:𝐶1-1𝐷 → (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷)
15 f1un 6823 . . . . . . . . . . 11 (((𝑥:𝐴1-1𝐵 ∧ (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
1614, 15sylanl2 681 . . . . . . . . . 10 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
1711, 16mpanr1 703 . . . . . . . . 9 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
18 vex 3454 . . . . . . . . . . . 12 𝑥 ∈ V
19 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
2019resex 6003 . . . . . . . . . . . 12 (𝑦 ↾ (𝐶𝐴)) ∈ V
2118, 20unex 7723 . . . . . . . . . . 11 (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))) ∈ V
22 f1dom3g 8942 . . . . . . . . . . 11 (((𝑥 ∪ (𝑦 ↾ (𝐶𝐴))) ∈ V ∧ (𝐵𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷)) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
2321, 22mp3an1 1450 . . . . . . . . . 10 (((𝐵𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷)) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
2423expcom 413 . . . . . . . . 9 ((𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
2517, 24syl 17 . . . . . . . 8 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
2625ex 412 . . . . . . 7 ((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
2726exlimivv 1932 . . . . . 6 (∃𝑥𝑦(𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
2810, 27sylbir 235 . . . . 5 ((∃𝑥 𝑥:𝐴1-1𝐵 ∧ ∃𝑦 𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
298, 9, 28syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
3029imp 406 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
317, 30mpd 15 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
321, 31eqbrtrrid 5146 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cres 5643  1-1wf1 6511  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-dom 8923
This theorem is referenced by:  domunsncan  9046  sucdom2OLD  9056  domunsn  9097  sucdom2  9173  unxpdom2  9208  sucxpdom  9209  fodomfi  9268  fodomfiOLD  9288  undjudom  10128  djudom1  10143
  Copyright terms: Public domain W3C validator