MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   GIF version

Theorem undom 8989
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) Avoid ax-pow 5307. (Revised by BTernaryTau, 4-Dec-2024.)
Assertion
Ref Expression
undom (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 undif2 4430 . 2 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
2 reldom 8885 . . . . . 6 Rel ≼
32brrelex2i 5680 . . . . 5 (𝐴𝐵𝐵 ∈ V)
42brrelex2i 5680 . . . . 5 (𝐶𝐷𝐷 ∈ V)
5 unexg 7683 . . . . 5 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
63, 4, 5syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → (𝐵𝐷) ∈ V)
76adantr 480 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐵𝐷) ∈ V)
8 brdomi 8892 . . . . 5 (𝐴𝐵 → ∃𝑥 𝑥:𝐴1-1𝐵)
9 brdomi 8892 . . . . 5 (𝐶𝐷 → ∃𝑦 𝑦:𝐶1-1𝐷)
10 exdistrv 1955 . . . . . 6 (∃𝑥𝑦(𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ↔ (∃𝑥 𝑥:𝐴1-1𝐵 ∧ ∃𝑦 𝑦:𝐶1-1𝐷))
11 disjdif 4425 . . . . . . . . . 10 (𝐴 ∩ (𝐶𝐴)) = ∅
12 difss 4089 . . . . . . . . . . . 12 (𝐶𝐴) ⊆ 𝐶
13 f1ssres 6731 . . . . . . . . . . . 12 ((𝑦:𝐶1-1𝐷 ∧ (𝐶𝐴) ⊆ 𝐶) → (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷)
1412, 13mpan2 691 . . . . . . . . . . 11 (𝑦:𝐶1-1𝐷 → (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷)
15 f1un 6788 . . . . . . . . . . 11 (((𝑥:𝐴1-1𝐵 ∧ (𝑦 ↾ (𝐶𝐴)):(𝐶𝐴)–1-1𝐷) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
1614, 15sylanl2 681 . . . . . . . . . 10 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝐵𝐷) = ∅)) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
1711, 16mpanr1 703 . . . . . . . . 9 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷))
18 vex 3442 . . . . . . . . . . . 12 𝑥 ∈ V
19 vex 3442 . . . . . . . . . . . . 13 𝑦 ∈ V
2019resex 5984 . . . . . . . . . . . 12 (𝑦 ↾ (𝐶𝐴)) ∈ V
2118, 20unex 7684 . . . . . . . . . . 11 (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))) ∈ V
22 f1dom3g 8900 . . . . . . . . . . 11 (((𝑥 ∪ (𝑦 ↾ (𝐶𝐴))) ∈ V ∧ (𝐵𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷)) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
2321, 22mp3an1 1450 . . . . . . . . . 10 (((𝐵𝐷) ∈ V ∧ (𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷)) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
2423expcom 413 . . . . . . . . 9 ((𝑥 ∪ (𝑦 ↾ (𝐶𝐴))):(𝐴 ∪ (𝐶𝐴))–1-1→(𝐵𝐷) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
2517, 24syl 17 . . . . . . . 8 (((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) ∧ (𝐵𝐷) = ∅) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
2625ex 412 . . . . . . 7 ((𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
2726exlimivv 1932 . . . . . 6 (∃𝑥𝑦(𝑥:𝐴1-1𝐵𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
2810, 27sylbir 235 . . . . 5 ((∃𝑥 𝑥:𝐴1-1𝐵 ∧ ∃𝑦 𝑦:𝐶1-1𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
298, 9, 28syl2an 596 . . . 4 ((𝐴𝐵𝐶𝐷) → ((𝐵𝐷) = ∅ → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))))
3029imp 406 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((𝐵𝐷) ∈ V → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷)))
317, 30mpd 15 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴 ∪ (𝐶𝐴)) ≼ (𝐵𝐷))
321, 31eqbrtrrid 5131 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286   class class class wbr 5095  cres 5625  1-1wf1 6483  cdom 8877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-dom 8881
This theorem is referenced by:  domunsncan  9001  domunsn  9051  sucdom2  9127  unxpdom2  9159  sucxpdom  9160  fodomfi  9219  fodomfiOLD  9239  undjudom  10081  djudom1  10096
  Copyright terms: Public domain W3C validator