| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabexd | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. In contrast to fabex 7873 or fabexg 7871, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| fabexd.f | ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) |
| fabexd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fabexd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fabexd | ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | fabexd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 3 | 1, 2 | xpexd 7687 | . . 3 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ V) |
| 4 | 3 | pwexd 5318 | . 2 ⊢ (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V) |
| 5 | fabexd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) | |
| 6 | fssxp 6679 | . . . . . 6 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 7 | velpw 4556 | . . . . . 6 ⊢ (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))) |
| 11 | 10 | abssdv 4020 | . 2 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ⊆ 𝒫 (𝑋 × 𝑌)) |
| 12 | 4, 11 | ssexd 5263 | 1 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3436 ⊆ wss 3903 𝒫 cpw 4551 × cxp 5617 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: fabexg 7871 f1oabexg 7875 grlimfn 47963 isgrlim 47966 |
| Copyright terms: Public domain | W3C validator |