MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexd Structured version   Visualization version   GIF version

Theorem fabexd 7870
Description: Existence of a set of functions. In contrast to fabex 7873 or fabexg 7871, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.)
Hypotheses
Ref Expression
fabexd.f ((𝜑𝜓) → 𝑓:𝑋𝑌)
fabexd.x (𝜑𝑋𝑉)
fabexd.y (𝜑𝑌𝑊)
Assertion
Ref Expression
fabexd (𝜑 → {𝑓𝜓} ∈ V)
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜓(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem fabexd
StepHypRef Expression
1 fabexd.x . . . 4 (𝜑𝑋𝑉)
2 fabexd.y . . . 4 (𝜑𝑌𝑊)
31, 2xpexd 7687 . . 3 (𝜑 → (𝑋 × 𝑌) ∈ V)
43pwexd 5318 . 2 (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V)
5 fabexd.f . . . . 5 ((𝜑𝜓) → 𝑓:𝑋𝑌)
6 fssxp 6679 . . . . . 6 (𝑓:𝑋𝑌𝑓 ⊆ (𝑋 × 𝑌))
7 velpw 4556 . . . . . 6 (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌))
86, 7sylibr 234 . . . . 5 (𝑓:𝑋𝑌𝑓 ∈ 𝒫 (𝑋 × 𝑌))
95, 8syl 17 . . . 4 ((𝜑𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))
109ex 412 . . 3 (𝜑 → (𝜓𝑓 ∈ 𝒫 (𝑋 × 𝑌)))
1110abssdv 4020 . 2 (𝜑 → {𝑓𝜓} ⊆ 𝒫 (𝑋 × 𝑌))
124, 11ssexd 5263 1 (𝜑 → {𝑓𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  Vcvv 3436  wss 3903  𝒫 cpw 4551   × cxp 5617  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  fabexg  7871  f1oabexg  7875  grlimfn  47963  isgrlim  47966
  Copyright terms: Public domain W3C validator