| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabexd | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. In contrast to fabex 7896 or fabexg 7894, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| fabexd.f | ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) |
| fabexd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fabexd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fabexd | ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | fabexd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 3 | 1, 2 | xpexd 7707 | . . 3 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ V) |
| 4 | 3 | pwexd 5329 | . 2 ⊢ (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V) |
| 5 | fabexd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) | |
| 6 | fssxp 6697 | . . . . . 6 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 7 | velpw 4564 | . . . . . 6 ⊢ (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))) |
| 11 | 10 | abssdv 4028 | . 2 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ⊆ 𝒫 (𝑋 × 𝑌)) |
| 12 | 4, 11 | ssexd 5274 | 1 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 × cxp 5629 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: fabexg 7894 f1oabexg 7898 grlimfn 47951 isgrlim 47954 |
| Copyright terms: Public domain | W3C validator |