![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fabexd | Structured version Visualization version GIF version |
Description: Existence of a set of functions. In contrast to fabex 7961 or fabexg 7959, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
Ref | Expression |
---|---|
fabexd.f | ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) |
fabexd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
fabexd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
Ref | Expression |
---|---|
fabexd | ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fabexd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | fabexd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
3 | 1, 2 | xpexd 7770 | . . 3 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ V) |
4 | 3 | pwexd 5385 | . 2 ⊢ (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V) |
5 | fabexd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) | |
6 | fssxp 6764 | . . . . . 6 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ⊆ (𝑋 × 𝑌)) | |
7 | velpw 4610 | . . . . . 6 ⊢ (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌)) | |
8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))) |
11 | 10 | abssdv 4078 | . 2 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ⊆ 𝒫 (𝑋 × 𝑌)) |
12 | 4, 11 | ssexd 5330 | 1 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2106 {cab 2712 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 × cxp 5687 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: fabexg 7959 f1oabexg 7963 grlimfn 47882 isgrlim 47885 |
Copyright terms: Public domain | W3C validator |