| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabexd | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. In contrast to fabex 7916 or fabexg 7914, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| fabexd.f | ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) |
| fabexd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fabexd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fabexd | ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | fabexd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 3 | 1, 2 | xpexd 7727 | . . 3 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ V) |
| 4 | 3 | pwexd 5334 | . 2 ⊢ (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V) |
| 5 | fabexd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) | |
| 6 | fssxp 6715 | . . . . . 6 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 7 | velpw 4568 | . . . . . 6 ⊢ (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))) |
| 11 | 10 | abssdv 4031 | . 2 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ⊆ 𝒫 (𝑋 × 𝑌)) |
| 12 | 4, 11 | ssexd 5279 | 1 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 × cxp 5636 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fabexg 7914 f1oabexg 7918 grlimfn 47978 isgrlim 47981 |
| Copyright terms: Public domain | W3C validator |