MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexd Structured version   Visualization version   GIF version

Theorem fabexd 7913
Description: Existence of a set of functions. In contrast to fabex 7916 or fabexg 7914, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.)
Hypotheses
Ref Expression
fabexd.f ((𝜑𝜓) → 𝑓:𝑋𝑌)
fabexd.x (𝜑𝑋𝑉)
fabexd.y (𝜑𝑌𝑊)
Assertion
Ref Expression
fabexd (𝜑 → {𝑓𝜓} ∈ V)
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜓(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem fabexd
StepHypRef Expression
1 fabexd.x . . . 4 (𝜑𝑋𝑉)
2 fabexd.y . . . 4 (𝜑𝑌𝑊)
31, 2xpexd 7727 . . 3 (𝜑 → (𝑋 × 𝑌) ∈ V)
43pwexd 5334 . 2 (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V)
5 fabexd.f . . . . 5 ((𝜑𝜓) → 𝑓:𝑋𝑌)
6 fssxp 6715 . . . . . 6 (𝑓:𝑋𝑌𝑓 ⊆ (𝑋 × 𝑌))
7 velpw 4568 . . . . . 6 (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌))
86, 7sylibr 234 . . . . 5 (𝑓:𝑋𝑌𝑓 ∈ 𝒫 (𝑋 × 𝑌))
95, 8syl 17 . . . 4 ((𝜑𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))
109ex 412 . . 3 (𝜑 → (𝜓𝑓 ∈ 𝒫 (𝑋 × 𝑌)))
1110abssdv 4031 . 2 (𝜑 → {𝑓𝜓} ⊆ 𝒫 (𝑋 × 𝑌))
124, 11ssexd 5279 1 (𝜑 → {𝑓𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  Vcvv 3447  wss 3914  𝒫 cpw 4563   × cxp 5636  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  fabexg  7914  f1oabexg  7918  grlimfn  47978  isgrlim  47981
  Copyright terms: Public domain W3C validator