MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fabexd Structured version   Visualization version   GIF version

Theorem fabexd 7958
Description: Existence of a set of functions. In contrast to fabex 7961 or fabexg 7959, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.)
Hypotheses
Ref Expression
fabexd.f ((𝜑𝜓) → 𝑓:𝑋𝑌)
fabexd.x (𝜑𝑋𝑉)
fabexd.y (𝜑𝑌𝑊)
Assertion
Ref Expression
fabexd (𝜑 → {𝑓𝜓} ∈ V)
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝜑,𝑓
Allowed substitution hints:   𝜓(𝑓)   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem fabexd
StepHypRef Expression
1 fabexd.x . . . 4 (𝜑𝑋𝑉)
2 fabexd.y . . . 4 (𝜑𝑌𝑊)
31, 2xpexd 7770 . . 3 (𝜑 → (𝑋 × 𝑌) ∈ V)
43pwexd 5385 . 2 (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V)
5 fabexd.f . . . . 5 ((𝜑𝜓) → 𝑓:𝑋𝑌)
6 fssxp 6764 . . . . . 6 (𝑓:𝑋𝑌𝑓 ⊆ (𝑋 × 𝑌))
7 velpw 4610 . . . . . 6 (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌))
86, 7sylibr 234 . . . . 5 (𝑓:𝑋𝑌𝑓 ∈ 𝒫 (𝑋 × 𝑌))
95, 8syl 17 . . . 4 ((𝜑𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))
109ex 412 . . 3 (𝜑 → (𝜓𝑓 ∈ 𝒫 (𝑋 × 𝑌)))
1110abssdv 4078 . 2 (𝜑 → {𝑓𝜓} ⊆ 𝒫 (𝑋 × 𝑌))
124, 11ssexd 5330 1 (𝜑 → {𝑓𝜓} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  {cab 2712  Vcvv 3478  wss 3963  𝒫 cpw 4605   × cxp 5687  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  fabexg  7959  f1oabexg  7963  grlimfn  47882  isgrlim  47885
  Copyright terms: Public domain W3C validator