| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fabexd | Structured version Visualization version GIF version | ||
| Description: Existence of a set of functions. In contrast to fabex 7870 or fabexg 7868, the condition in the class abstraction does not contain the function explicitly, but the function can be derived from it. Therefore, this theorem is also applicable for more special functions like one-to-one, onto or one-to-one onto functions. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| fabexd.f | ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) |
| fabexd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| fabexd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fabexd | ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fabexd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | fabexd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑊) | |
| 3 | 1, 2 | xpexd 7684 | . . 3 ⊢ (𝜑 → (𝑋 × 𝑌) ∈ V) |
| 4 | 3 | pwexd 5315 | . 2 ⊢ (𝜑 → 𝒫 (𝑋 × 𝑌) ∈ V) |
| 5 | fabexd.f | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝑓:𝑋⟶𝑌) | |
| 6 | fssxp 6678 | . . . . . 6 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 7 | velpw 4552 | . . . . . 6 ⊢ (𝑓 ∈ 𝒫 (𝑋 × 𝑌) ↔ 𝑓 ⊆ (𝑋 × 𝑌)) | |
| 8 | 6, 7 | sylibr 234 | . . . . 5 ⊢ (𝑓:𝑋⟶𝑌 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝑓 ∈ 𝒫 (𝑋 × 𝑌)) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝜓 → 𝑓 ∈ 𝒫 (𝑋 × 𝑌))) |
| 11 | 10 | abssdv 4014 | . 2 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ⊆ 𝒫 (𝑋 × 𝑌)) |
| 12 | 4, 11 | ssexd 5260 | 1 ⊢ (𝜑 → {𝑓 ∣ 𝜓} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 × cxp 5612 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: fabexg 7868 f1oabexg 7872 grlimfn 48018 isgrlim 48021 |
| Copyright terms: Public domain | W3C validator |