| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| fco2 | ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fco 6676 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶) | |
| 2 | frn 6659 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ran 𝐺 ⊆ 𝐵) | |
| 3 | cores 6198 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
| 6 | 5 | feq1d 6634 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):𝐴⟶𝐶)) |
| 7 | 1, 6 | mpbid 232 | 1 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3903 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 ⟶wf 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-f 6486 |
| This theorem is referenced by: fsuppcor 9294 prdsrngd 20061 prdsringd 20206 prdscrngd 20207 prds1 20208 prdstmdd 24009 prdsxmslem2 24415 eulerpartlemmf 34343 sseqf 34360 poimirlem9 37609 ftc1anclem3 37675 fco2d 44135 |
| Copyright terms: Public domain | W3C validator |