MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco2 Structured version   Visualization version   GIF version

Theorem fco2 6744
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco2
StepHypRef Expression
1 fco 6741 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺):𝐴𝐶)
2 frn 6723 . . . . 5 (𝐺:𝐴𝐵 → ran 𝐺𝐵)
3 cores 6247 . . . . 5 (ran 𝐺𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
42, 3syl 17 . . . 4 (𝐺:𝐴𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
54adantl 481 . . 3 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
65feq1d 6701 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐵) ∘ 𝐺):𝐴𝐶 ↔ (𝐹𝐺):𝐴𝐶))
71, 6mpbid 231 1 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wss 3945  ran crn 5673  cres 5674  ccom 5676  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-fun 6544  df-fn 6545  df-f 6546
This theorem is referenced by:  fsuppcor  9421  prdsrngd  20109  prdsringd  20250  prdscrngd  20251  prds1  20252  prdstmdd  24021  prdsxmslem2  24431  eulerpartlemmf  33989  sseqf  34006  poimirlem9  37096  ftc1anclem3  37162  fco2d  43586
  Copyright terms: Public domain W3C validator