MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco2 Structured version   Visualization version   GIF version

Theorem fco2 6677
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fco2
StepHypRef Expression
1 fco 6675 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺):𝐴𝐶)
2 frn 6658 . . . . 5 (𝐺:𝐴𝐵 → ran 𝐺𝐵)
3 cores 6196 . . . . 5 (ran 𝐺𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
42, 3syl 17 . . . 4 (𝐺:𝐴𝐵 → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
54adantl 481 . . 3 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → ((𝐹𝐵) ∘ 𝐺) = (𝐹𝐺))
65feq1d 6633 . 2 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (((𝐹𝐵) ∘ 𝐺):𝐴𝐶 ↔ (𝐹𝐺):𝐴𝐶))
71, 6mpbid 232 1 (((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wss 3897  ran crn 5615  cres 5616  ccom 5618  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485
This theorem is referenced by:  fsuppcor  9288  prdsrngd  20094  prdsringd  20239  prdscrngd  20240  prds1  20241  prdstmdd  24039  prdsxmslem2  24444  eulerpartlemmf  34388  sseqf  34405  poimirlem9  37677  ftc1anclem3  37743  fco2d  44203
  Copyright terms: Public domain W3C validator