| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco2 | Structured version Visualization version GIF version | ||
| Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.) |
| Ref | Expression |
|---|---|
| fco2 | ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fco 6730 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶) | |
| 2 | frn 6713 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ran 𝐺 ⊆ 𝐵) | |
| 3 | cores 6238 | . . . . 5 ⊢ (ran 𝐺 ⊆ 𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
| 5 | 4 | adantl 481 | . . 3 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ↾ 𝐵) ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
| 6 | 5 | feq1d 6690 | . 2 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (((𝐹 ↾ 𝐵) ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):𝐴⟶𝐶)) |
| 7 | 1, 6 | mpbid 232 | 1 ⊢ (((𝐹 ↾ 𝐵):𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ran crn 5655 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 |
| This theorem is referenced by: fsuppcor 9416 prdsrngd 20136 prdsringd 20281 prdscrngd 20282 prds1 20283 prdstmdd 24062 prdsxmslem2 24468 eulerpartlemmf 34407 sseqf 34424 poimirlem9 37653 ftc1anclem3 37719 fco2d 44186 |
| Copyright terms: Public domain | W3C validator |