![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcoOLD | Structured version Visualization version GIF version |
Description: Obsolete version of fco 6771 as of 20-Sep-2024. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
fcoOLD | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6577 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
2 | df-f 6577 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
3 | fnco 6697 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴) | |
4 | 3 | 3expib 1122 | . . . . . 6 ⊢ (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
6 | rncoss 5998 | . . . . . . 7 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
7 | sstr 4017 | . . . . . . 7 ⊢ ((ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) | |
8 | 6, 7 | mpan 689 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐶 → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
10 | 5, 9 | jctird 526 | . . . 4 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶))) |
11 | 10 | imp 406 | . . 3 ⊢ (((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
12 | 1, 2, 11 | syl2anb 597 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
13 | df-f 6577 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) | |
14 | 12, 13 | sylibr 234 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 ran crn 5701 ∘ ccom 5704 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |