| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6691 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6711 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6710 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2735 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6672 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5637 “ cima 5641 ∘ ccom 5642 Fun wfun 6505 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fcod 6713 fco2 6714 mapen 9105 fsuppco2 9354 mapfienlem1 9356 unxpwdom2 9541 wemapwe 9650 cfcoflem 10225 isf34lem7 10332 isf34lem6 10333 inar1 10728 addnqf 10901 mulnqf 10902 axdc4uzlem 13948 seqf1olem2 14007 wrdco 14797 lenco 14798 lo1o1 15498 o1co 15552 caucvgrlem2 15641 fsumcl2lem 15697 fsumadd 15706 fsummulc2 15750 fsumrelem 15773 supcvg 15822 fprodcl2lem 15916 fprodmul 15926 fproddiv 15927 fprodn0 15945 algcvg 16546 cofucl 17850 setccatid 18046 estrccatid 18093 funcestrcsetclem9 18109 funcsetcestrclem9 18124 yonedalem3b 18240 mgmhmco 18641 mhmco 18750 pwsco1mhm 18759 pwsco2mhm 18760 gsumwmhm 18772 efmndcl 18809 f1omvdconj 19376 pmtrfinv 19391 symgtrinv 19402 psgnunilem1 19423 gsumval3lem1 19835 gsumval3 19837 gsumzcl2 19840 gsumzf1o 19842 gsumzaddlem 19851 gsumzmhm 19867 gsumzoppg 19874 gsumzinv 19875 gsumsub 19878 dprdf1o 19964 ablfaclem2 20018 cnfldds 21276 cnflddsOLD 21289 dsmmbas2 21646 f1lindf 21731 lindfmm 21736 psrnegcl 21863 coe1f2 22094 cpmadumatpolylem1 22768 cnco 23153 cnpco 23154 lmcnp 23191 cnmpt11 23550 cnmpt21 23558 qtopcn 23601 fmco 23848 flfcnp 23891 tsmsf1o 24032 tsmsmhm 24033 tsmssub 24036 imasdsf1olem 24261 nrmmetd 24462 isngp2 24485 isngp3 24486 tngngp2 24540 cnmet 24659 cnfldms 24663 cncfco 24800 cnfldcusp 25257 ovolfioo 25368 ovolficc 25369 ovolfsf 25372 ovollb 25380 ovolctb 25391 ovolicc2lem4 25421 ovolicc2 25423 volsup 25457 uniioovol 25480 uniioombllem3a 25485 uniioombllem3 25486 uniioombllem4 25487 uniioombllem5 25488 uniioombl 25490 mbfdm 25527 ismbfcn 25530 mbfres 25545 mbfimaopnlem 25556 cncombf 25559 limccnp 25792 dvcobrOLD 25850 dvcof 25852 dvcjbr 25853 dvcj 25854 dvmptco 25876 dvlip2 25900 itgsubstlem 25955 coecj 26184 coecjOLD 26186 pserulm 26331 jensenlem2 26898 jensen 26899 amgmlem 26900 gamf 26953 dchrinv 27172 motcgrg 28471 vsfval 30562 imsdf 30618 lnocoi 30686 hocofi 31695 homco1 31730 homco2 31906 hmopco 31952 kbass2 32046 kbass5 32049 opsqrlem1 32069 opsqrlem6 32074 pjinvari 32120 fmptco1f1o 32557 fcobij 32645 fcobijfs 32646 mbfmco 34255 dstfrvclim1 34469 reprpmtf1o 34617 mrsubco 35508 mclsppslem 35570 circum 35661 mblfinlem2 37652 mbfresfi 37660 ftc1anclem5 37691 ghomco 37885 rngohomco 37968 tendococl 40766 mapco2g 42702 diophrw 42747 hausgraph 43194 sblpnf 44299 fcoss 45204 limccog 45618 mbfres2cn 45956 volioof 45985 volioofmpt 45992 voliooicof 45994 stoweidlem31 46029 stoweidlem59 46057 subsaliuncllem 46355 sge0resrnlem 46401 hoicvr 46546 ovolval2lem 46641 ovolval2 46642 ovolval3 46645 ovolval4lem1 46647 gricushgr 47917 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |