| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6659 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6679 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6678 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2735 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6640 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5622 “ cima 5626 ∘ ccom 5627 Fun wfun 6480 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fcod 6681 fco2 6682 mapen 9065 fsuppco2 9312 mapfienlem1 9314 unxpwdom2 9499 wemapwe 9612 cfcoflem 10185 isf34lem7 10292 isf34lem6 10293 inar1 10688 addnqf 10861 mulnqf 10862 axdc4uzlem 13908 seqf1olem2 13967 wrdco 14756 lenco 14757 lo1o1 15457 o1co 15511 caucvgrlem2 15600 fsumcl2lem 15656 fsumadd 15665 fsummulc2 15709 fsumrelem 15732 supcvg 15781 fprodcl2lem 15875 fprodmul 15885 fproddiv 15886 fprodn0 15904 algcvg 16505 cofucl 17813 setccatid 18009 estrccatid 18056 funcestrcsetclem9 18072 funcsetcestrclem9 18087 yonedalem3b 18203 mgmhmco 18606 mhmco 18715 pwsco1mhm 18724 pwsco2mhm 18725 gsumwmhm 18737 efmndcl 18774 f1omvdconj 19343 pmtrfinv 19358 symgtrinv 19369 psgnunilem1 19390 gsumval3lem1 19802 gsumval3 19804 gsumzcl2 19807 gsumzf1o 19809 gsumzaddlem 19818 gsumzmhm 19834 gsumzoppg 19841 gsumzinv 19842 gsumsub 19845 dprdf1o 19931 ablfaclem2 19985 cnfldds 21291 cnflddsOLD 21304 dsmmbas2 21662 f1lindf 21747 lindfmm 21752 psrnegcl 21879 coe1f2 22110 cpmadumatpolylem1 22784 cnco 23169 cnpco 23170 lmcnp 23207 cnmpt11 23566 cnmpt21 23574 qtopcn 23617 fmco 23864 flfcnp 23907 tsmsf1o 24048 tsmsmhm 24049 tsmssub 24052 imasdsf1olem 24277 nrmmetd 24478 isngp2 24501 isngp3 24502 tngngp2 24556 cnmet 24675 cnfldms 24679 cncfco 24816 cnfldcusp 25273 ovolfioo 25384 ovolficc 25385 ovolfsf 25388 ovollb 25396 ovolctb 25407 ovolicc2lem4 25437 ovolicc2 25439 volsup 25473 uniioovol 25496 uniioombllem3a 25501 uniioombllem3 25502 uniioombllem4 25503 uniioombllem5 25504 uniioombl 25506 mbfdm 25543 ismbfcn 25546 mbfres 25561 mbfimaopnlem 25572 cncombf 25575 limccnp 25808 dvcobrOLD 25866 dvcof 25868 dvcjbr 25869 dvcj 25870 dvmptco 25892 dvlip2 25916 itgsubstlem 25971 coecj 26200 coecjOLD 26202 pserulm 26347 jensenlem2 26914 jensen 26915 amgmlem 26916 gamf 26969 dchrinv 27188 motcgrg 28507 vsfval 30595 imsdf 30651 lnocoi 30719 hocofi 31728 homco1 31763 homco2 31939 hmopco 31985 kbass2 32079 kbass5 32082 opsqrlem1 32102 opsqrlem6 32107 pjinvari 32153 fmptco1f1o 32590 fcobij 32678 fcobijfs 32679 mbfmco 34234 dstfrvclim1 34448 reprpmtf1o 34596 mrsubco 35496 mclsppslem 35558 circum 35649 mblfinlem2 37640 mbfresfi 37648 ftc1anclem5 37679 ghomco 37873 rngohomco 37956 tendococl 40754 mapco2g 42690 diophrw 42735 hausgraph 43181 sblpnf 44286 fcoss 45191 limccog 45605 mbfres2cn 45943 volioof 45972 volioofmpt 45979 voliooicof 45981 stoweidlem31 46016 stoweidlem59 46044 subsaliuncllem 46342 sge0resrnlem 46388 hoicvr 46533 ovolval2lem 46628 ovolval2 46629 ovolval3 46632 ovolval4lem1 46634 gricushgr 47905 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |