Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6599 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
2 | fcof 6619 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
4 | fimacnv 6618 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
5 | 4 | eqcomd 2745 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | 6 | feq2d 6582 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
8 | 3, 7 | mpbird 256 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ◡ccnv 5587 “ cima 5591 ∘ ccom 5592 Fun wfun 6424 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: fcod 6622 fco2 6623 f1coOLD 6679 mapen 8893 fsuppco2 9123 mapfienlem1 9125 unxpwdom2 9308 wemapwe 9416 cfcoflem 10012 isf34lem7 10119 isf34lem6 10120 inar1 10515 addnqf 10688 mulnqf 10689 axdc4uzlem 13684 seqf1olem2 13744 wrdco 14525 lenco 14526 lo1o1 15222 o1co 15276 caucvgrlem2 15367 fsumcl2lem 15424 fsumadd 15433 fsummulc2 15477 fsumrelem 15500 supcvg 15549 fprodcl2lem 15641 fprodmul 15651 fproddiv 15652 fprodn0 15670 algcvg 16262 cofucl 17584 setccatid 17780 estrccatid 17829 funcestrcsetclem9 17846 funcsetcestrclem9 17861 yonedalem3b 17978 mhmco 18443 pwsco1mhm 18451 pwsco2mhm 18452 gsumwmhm 18465 efmndcl 18502 f1omvdconj 19035 pmtrfinv 19050 symgtrinv 19061 psgnunilem1 19082 gsumval3lem1 19487 gsumval3 19489 gsumzcl2 19492 gsumzf1o 19494 gsumzaddlem 19503 gsumzmhm 19519 gsumzoppg 19526 gsumzinv 19527 gsumsub 19530 dprdf1o 19616 ablfaclem2 19670 cnfldds 20588 dsmmbas2 20925 f1lindf 21010 lindfmm 21015 psrass1lemOLD 21124 psrnegcl 21146 coe1f2 21361 cpmadumatpolylem1 22011 cnco 22398 cnpco 22399 lmcnp 22436 cnmpt11 22795 cnmpt21 22803 qtopcn 22846 fmco 23093 flfcnp 23136 tsmsf1o 23277 tsmsmhm 23278 tsmssub 23281 imasdsf1olem 23507 nrmmetd 23711 isngp2 23734 isngp3 23735 tngngp2 23797 cnmet 23916 cnfldms 23920 cncfco 24051 cnfldcusp 24502 ovolfioo 24612 ovolficc 24613 ovolfsf 24616 ovollb 24624 ovolctb 24635 ovolicc2lem4 24665 ovolicc2 24667 volsup 24701 uniioovol 24724 uniioombllem3a 24729 uniioombllem3 24730 uniioombllem4 24731 uniioombllem5 24732 uniioombl 24734 mbfdm 24771 ismbfcn 24774 mbfres 24789 mbfimaopnlem 24800 cncombf 24803 limccnp 25036 dvcobr 25091 dvcof 25093 dvcjbr 25094 dvcj 25095 dvmptco 25117 dvlip2 25140 itgsubstlem 25193 coecj 25420 pserulm 25562 jensenlem2 26118 jensen 26119 amgmlem 26120 gamf 26173 dchrinv 26390 motcgrg 26886 vsfval 28974 imsdf 29030 lnocoi 29098 hocofi 30107 homco1 30142 homco2 30318 hmopco 30364 kbass2 30458 kbass5 30461 opsqrlem1 30481 opsqrlem6 30486 pjinvari 30532 fmptco1f1o 30947 fcobij 31036 fcobijfs 31037 mbfmco 32210 dstfrvclim1 32423 reprpmtf1o 32585 mrsubco 33462 mclsppslem 33524 circum 33611 mblfinlem2 35794 mbfresfi 35802 ftc1anclem5 35833 ghomco 36028 rngohomco 36111 tendococl 38765 mapco2g 40516 diophrw 40561 hausgraph 41017 sblpnf 41881 fcoss 42703 limccog 43115 mbfres2cn 43453 volioof 43482 volioofmpt 43489 voliooicof 43491 stoweidlem31 43526 stoweidlem59 43554 subsaliuncllem 43850 sge0resrnlem 43895 hoicvr 44040 ovolval2lem 44135 ovolval2 44136 ovolval3 44139 ovolval4lem1 44141 ovolval5lem3 44146 isomushgr 45230 mgmhmco 45307 amgmwlem 46458 |
Copyright terms: Public domain | W3C validator |