| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6708 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6728 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6727 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2741 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6691 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5653 “ cima 5657 ∘ ccom 5658 Fun wfun 6524 ⟶wf 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6532 df-fn 6533 df-f 6534 |
| This theorem is referenced by: fcod 6730 fco2 6731 mapen 9153 fsuppco2 9413 mapfienlem1 9415 unxpwdom2 9600 wemapwe 9709 cfcoflem 10284 isf34lem7 10391 isf34lem6 10392 inar1 10787 addnqf 10960 mulnqf 10961 axdc4uzlem 13999 seqf1olem2 14058 wrdco 14848 lenco 14849 lo1o1 15546 o1co 15600 caucvgrlem2 15689 fsumcl2lem 15745 fsumadd 15754 fsummulc2 15798 fsumrelem 15821 supcvg 15870 fprodcl2lem 15964 fprodmul 15974 fproddiv 15975 fprodn0 15993 algcvg 16593 cofucl 17899 setccatid 18095 estrccatid 18142 funcestrcsetclem9 18158 funcsetcestrclem9 18173 yonedalem3b 18289 mgmhmco 18690 mhmco 18799 pwsco1mhm 18808 pwsco2mhm 18809 gsumwmhm 18821 efmndcl 18858 f1omvdconj 19425 pmtrfinv 19440 symgtrinv 19451 psgnunilem1 19472 gsumval3lem1 19884 gsumval3 19886 gsumzcl2 19889 gsumzf1o 19891 gsumzaddlem 19900 gsumzmhm 19916 gsumzoppg 19923 gsumzinv 19924 gsumsub 19927 dprdf1o 20013 ablfaclem2 20067 cnfldds 21325 cnflddsOLD 21338 dsmmbas2 21695 f1lindf 21780 lindfmm 21785 psrnegcl 21912 coe1f2 22143 cpmadumatpolylem1 22817 cnco 23202 cnpco 23203 lmcnp 23240 cnmpt11 23599 cnmpt21 23607 qtopcn 23650 fmco 23897 flfcnp 23940 tsmsf1o 24081 tsmsmhm 24082 tsmssub 24085 imasdsf1olem 24310 nrmmetd 24511 isngp2 24534 isngp3 24535 tngngp2 24589 cnmet 24708 cnfldms 24712 cncfco 24849 cnfldcusp 25307 ovolfioo 25418 ovolficc 25419 ovolfsf 25422 ovollb 25430 ovolctb 25441 ovolicc2lem4 25471 ovolicc2 25473 volsup 25507 uniioovol 25530 uniioombllem3a 25535 uniioombllem3 25536 uniioombllem4 25537 uniioombllem5 25538 uniioombl 25540 mbfdm 25577 ismbfcn 25580 mbfres 25595 mbfimaopnlem 25606 cncombf 25609 limccnp 25842 dvcobrOLD 25900 dvcof 25902 dvcjbr 25903 dvcj 25904 dvmptco 25926 dvlip2 25950 itgsubstlem 26005 coecj 26234 coecjOLD 26236 pserulm 26381 jensenlem2 26948 jensen 26949 amgmlem 26950 gamf 27003 dchrinv 27222 motcgrg 28469 vsfval 30560 imsdf 30616 lnocoi 30684 hocofi 31693 homco1 31728 homco2 31904 hmopco 31950 kbass2 32044 kbass5 32047 opsqrlem1 32067 opsqrlem6 32072 pjinvari 32118 fmptco1f1o 32557 fcobij 32645 fcobijfs 32646 mbfmco 34242 dstfrvclim1 34456 reprpmtf1o 34604 mrsubco 35489 mclsppslem 35551 circum 35642 mblfinlem2 37628 mbfresfi 37636 ftc1anclem5 37667 ghomco 37861 rngohomco 37944 tendococl 40737 mapco2g 42684 diophrw 42729 hausgraph 43176 sblpnf 44282 fcoss 45182 limccog 45597 mbfres2cn 45935 volioof 45964 volioofmpt 45971 voliooicof 45973 stoweidlem31 46008 stoweidlem59 46036 subsaliuncllem 46334 sge0resrnlem 46380 hoicvr 46525 ovolval2lem 46620 ovolval2 46621 ovolval3 46624 ovolval4lem1 46626 gricushgr 47878 amgmwlem 49561 |
| Copyright terms: Public domain | W3C validator |