Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 6339 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
2 | df-f 6339 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
3 | fnco 6448 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴) | |
4 | 3 | 3expib 1119 | . . . . . 6 ⊢ (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
6 | rncoss 5813 | . . . . . . 7 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
7 | sstr 3900 | . . . . . . 7 ⊢ ((ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) | |
8 | 6, 7 | mpan 689 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐶 → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
9 | 8 | adantl 485 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
10 | 5, 9 | jctird 530 | . . . 4 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶))) |
11 | 10 | imp 410 | . . 3 ⊢ (((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
12 | 1, 2, 11 | syl2anb 600 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
13 | df-f 6339 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) | |
14 | 12, 13 | sylibr 237 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊆ wss 3858 ran crn 5525 ∘ ccom 5528 Fn wfn 6330 ⟶wf 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-fun 6337 df-fn 6338 df-f 6339 |
This theorem is referenced by: fcod 6517 fco2 6518 f1co 6571 foco 6588 mapen 8703 fsuppco2 8900 mapfienlem1 8902 unxpwdom2 9085 wemapwe 9193 cfcoflem 9732 isf34lem7 9839 isf34lem6 9840 inar1 10235 addnqf 10408 mulnqf 10409 axdc4uzlem 13400 seqf1olem2 13460 wrdco 14240 lenco 14241 lo1o1 14937 o1co 14991 caucvgrlem2 15079 fsumcl2lem 15136 fsumadd 15144 fsummulc2 15187 fsumrelem 15210 supcvg 15259 fprodcl2lem 15352 fprodmul 15362 fproddiv 15363 fprodn0 15381 algcvg 15972 cofucl 17217 setccatid 17410 estrccatid 17448 funcestrcsetclem9 17464 funcsetcestrclem9 17479 yonedalem3b 17595 mhmco 18054 pwsco1mhm 18062 pwsco2mhm 18063 gsumwmhm 18076 efmndcl 18113 f1omvdconj 18641 pmtrfinv 18656 symgtrinv 18667 psgnunilem1 18688 gsumval3lem1 19093 gsumval3 19095 gsumzcl2 19098 gsumzf1o 19100 gsumzaddlem 19109 gsumzmhm 19125 gsumzoppg 19132 gsumzinv 19133 gsumsub 19136 dprdf1o 19222 ablfaclem2 19276 cnfldds 20176 dsmmbas2 20502 f1lindf 20587 lindfmm 20592 psrass1lemOLD 20702 psrnegcl 20724 coe1f2 20933 cpmadumatpolylem1 21581 cnco 21966 cnpco 21967 lmcnp 22004 cnmpt11 22363 cnmpt21 22371 qtopcn 22414 fmco 22661 flfcnp 22704 tsmsf1o 22845 tsmsmhm 22846 tsmssub 22849 imasdsf1olem 23075 nrmmetd 23276 isngp2 23299 isngp3 23300 tngngp2 23354 cnmet 23473 cnfldms 23477 cncfco 23608 cnfldcusp 24057 ovolfioo 24167 ovolficc 24168 ovolfsf 24171 ovollb 24179 ovolctb 24190 ovolicc2lem4 24220 ovolicc2 24222 volsup 24256 uniioovol 24279 uniioombllem3a 24284 uniioombllem3 24285 uniioombllem4 24286 uniioombllem5 24287 uniioombl 24289 mbfdm 24326 ismbfcn 24329 mbfres 24344 mbfimaopnlem 24355 cncombf 24358 limccnp 24590 dvcobr 24645 dvcof 24647 dvcjbr 24648 dvcj 24649 dvmptco 24671 dvlip2 24694 itgsubstlem 24747 coecj 24974 pserulm 25116 jensenlem2 25672 jensen 25673 amgmlem 25674 gamf 25727 dchrinv 25944 motcgrg 26437 vsfval 28515 imsdf 28571 lnocoi 28639 hocofi 29648 homco1 29683 homco2 29859 hmopco 29905 kbass2 29999 kbass5 30002 opsqrlem1 30022 opsqrlem6 30027 pjinvari 30073 fmptco1f1o 30490 fcobij 30581 fcobijfs 30582 mbfmco 31750 dstfrvclim1 31963 reprpmtf1o 32125 mrsubco 32999 mclsppslem 33061 circum 33148 mblfinlem2 35375 mbfresfi 35383 ftc1anclem5 35414 ghomco 35609 rngohomco 35692 tendococl 38348 mapco2g 40028 diophrw 40073 hausgraph 40529 sblpnf 41387 fcoss 42209 limccog 42628 mbfres2cn 42966 volioof 42995 volioofmpt 43002 voliooicof 43004 stoweidlem31 43039 stoweidlem59 43067 subsaliuncllem 43363 sge0resrnlem 43408 hoicvr 43553 ovolval2lem 43648 ovolval2 43649 ovolval3 43652 ovolval4lem1 43654 ovolval5lem3 43659 isomushgr 44711 mgmhmco 44788 amgmwlem 45721 |
Copyright terms: Public domain | W3C validator |