Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6633 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
2 | fcof 6653 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
3 | 1, 2 | sylan2 594 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
4 | fimacnv 6652 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
5 | 4 | eqcomd 2742 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | 6 | feq2d 6616 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ◡ccnv 5599 “ cima 5603 ∘ ccom 5604 Fun wfun 6452 ⟶wf 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-fun 6460 df-fn 6461 df-f 6462 |
This theorem is referenced by: fcod 6656 fco2 6657 f1coOLD 6713 mapen 8966 fsuppco2 9206 mapfienlem1 9208 unxpwdom2 9391 wemapwe 9499 cfcoflem 10074 isf34lem7 10181 isf34lem6 10182 inar1 10577 addnqf 10750 mulnqf 10751 axdc4uzlem 13749 seqf1olem2 13809 wrdco 14589 lenco 14590 lo1o1 15286 o1co 15340 caucvgrlem2 15431 fsumcl2lem 15488 fsumadd 15497 fsummulc2 15541 fsumrelem 15564 supcvg 15613 fprodcl2lem 15705 fprodmul 15715 fproddiv 15716 fprodn0 15734 algcvg 16326 cofucl 17648 setccatid 17844 estrccatid 17893 funcestrcsetclem9 17910 funcsetcestrclem9 17925 yonedalem3b 18042 mhmco 18507 pwsco1mhm 18515 pwsco2mhm 18516 gsumwmhm 18529 efmndcl 18566 f1omvdconj 19099 pmtrfinv 19114 symgtrinv 19125 psgnunilem1 19146 gsumval3lem1 19551 gsumval3 19553 gsumzcl2 19556 gsumzf1o 19558 gsumzaddlem 19567 gsumzmhm 19583 gsumzoppg 19590 gsumzinv 19591 gsumsub 19594 dprdf1o 19680 ablfaclem2 19734 cnfldds 20652 dsmmbas2 20989 f1lindf 21074 lindfmm 21079 psrass1lemOLD 21188 psrnegcl 21210 coe1f2 21425 cpmadumatpolylem1 22075 cnco 22462 cnpco 22463 lmcnp 22500 cnmpt11 22859 cnmpt21 22867 qtopcn 22910 fmco 23157 flfcnp 23200 tsmsf1o 23341 tsmsmhm 23342 tsmssub 23345 imasdsf1olem 23571 nrmmetd 23775 isngp2 23798 isngp3 23799 tngngp2 23861 cnmet 23980 cnfldms 23984 cncfco 24115 cnfldcusp 24566 ovolfioo 24676 ovolficc 24677 ovolfsf 24680 ovollb 24688 ovolctb 24699 ovolicc2lem4 24729 ovolicc2 24731 volsup 24765 uniioovol 24788 uniioombllem3a 24793 uniioombllem3 24794 uniioombllem4 24795 uniioombllem5 24796 uniioombl 24798 mbfdm 24835 ismbfcn 24838 mbfres 24853 mbfimaopnlem 24864 cncombf 24867 limccnp 25100 dvcobr 25155 dvcof 25157 dvcjbr 25158 dvcj 25159 dvmptco 25181 dvlip2 25204 itgsubstlem 25257 coecj 25484 pserulm 25626 jensenlem2 26182 jensen 26183 amgmlem 26184 gamf 26237 dchrinv 26454 motcgrg 26950 vsfval 29040 imsdf 29096 lnocoi 29164 hocofi 30173 homco1 30208 homco2 30384 hmopco 30430 kbass2 30524 kbass5 30527 opsqrlem1 30547 opsqrlem6 30552 pjinvari 30598 fmptco1f1o 31013 fcobij 31102 fcobijfs 31103 mbfmco 32276 dstfrvclim1 32489 reprpmtf1o 32651 mrsubco 33528 mclsppslem 33590 circum 33677 mblfinlem2 35859 mbfresfi 35867 ftc1anclem5 35898 ghomco 36093 rngohomco 36176 tendococl 38828 mapco2g 40573 diophrw 40618 hausgraph 41075 sblpnf 41966 fcoss 42794 limccog 43210 mbfres2cn 43548 volioof 43577 volioofmpt 43584 voliooicof 43586 stoweidlem31 43621 stoweidlem59 43649 subsaliuncllem 43945 sge0resrnlem 43991 hoicvr 44136 ovolval2lem 44231 ovolval2 44232 ovolval3 44235 ovolval4lem1 44237 isomushgr 45336 mgmhmco 45413 amgmwlem 46564 |
Copyright terms: Public domain | W3C validator |