![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6750 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
2 | fcof 6770 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
4 | fimacnv 6769 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
5 | 4 | eqcomd 2746 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | 6 | feq2d 6733 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ◡ccnv 5699 “ cima 5703 ∘ ccom 5704 Fun wfun 6567 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fcod 6773 fco2 6774 f1coOLD 6829 mapen 9207 fsuppco2 9472 mapfienlem1 9474 unxpwdom2 9657 wemapwe 9766 cfcoflem 10341 isf34lem7 10448 isf34lem6 10449 inar1 10844 addnqf 11017 mulnqf 11018 axdc4uzlem 14034 seqf1olem2 14093 wrdco 14880 lenco 14881 lo1o1 15578 o1co 15632 caucvgrlem2 15723 fsumcl2lem 15779 fsumadd 15788 fsummulc2 15832 fsumrelem 15855 supcvg 15904 fprodcl2lem 15998 fprodmul 16008 fproddiv 16009 fprodn0 16027 algcvg 16623 cofucl 17952 setccatid 18151 estrccatid 18200 funcestrcsetclem9 18217 funcsetcestrclem9 18232 yonedalem3b 18349 mgmhmco 18752 mhmco 18858 pwsco1mhm 18867 pwsco2mhm 18868 gsumwmhm 18880 efmndcl 18917 f1omvdconj 19488 pmtrfinv 19503 symgtrinv 19514 psgnunilem1 19535 gsumval3lem1 19947 gsumval3 19949 gsumzcl2 19952 gsumzf1o 19954 gsumzaddlem 19963 gsumzmhm 19979 gsumzoppg 19986 gsumzinv 19987 gsumsub 19990 dprdf1o 20076 ablfaclem2 20130 cnfldds 21399 cnflddsOLD 21412 dsmmbas2 21780 f1lindf 21865 lindfmm 21870 psrnegcl 21997 coe1f2 22232 cpmadumatpolylem1 22908 cnco 23295 cnpco 23296 lmcnp 23333 cnmpt11 23692 cnmpt21 23700 qtopcn 23743 fmco 23990 flfcnp 24033 tsmsf1o 24174 tsmsmhm 24175 tsmssub 24178 imasdsf1olem 24404 nrmmetd 24608 isngp2 24631 isngp3 24632 tngngp2 24694 cnmet 24813 cnfldms 24817 cncfco 24952 cnfldcusp 25410 ovolfioo 25521 ovolficc 25522 ovolfsf 25525 ovollb 25533 ovolctb 25544 ovolicc2lem4 25574 ovolicc2 25576 volsup 25610 uniioovol 25633 uniioombllem3a 25638 uniioombllem3 25639 uniioombllem4 25640 uniioombllem5 25641 uniioombl 25643 mbfdm 25680 ismbfcn 25683 mbfres 25698 mbfimaopnlem 25709 cncombf 25712 limccnp 25946 dvcobrOLD 26004 dvcof 26006 dvcjbr 26007 dvcj 26008 dvmptco 26030 dvlip2 26054 itgsubstlem 26109 coecj 26338 pserulm 26483 jensenlem2 27049 jensen 27050 amgmlem 27051 gamf 27104 dchrinv 27323 motcgrg 28570 vsfval 30665 imsdf 30721 lnocoi 30789 hocofi 31798 homco1 31833 homco2 32009 hmopco 32055 kbass2 32149 kbass5 32152 opsqrlem1 32172 opsqrlem6 32177 pjinvari 32223 fmptco1f1o 32652 fcobij 32736 fcobijfs 32737 mbfmco 34229 dstfrvclim1 34442 reprpmtf1o 34603 mrsubco 35489 mclsppslem 35551 circum 35642 mblfinlem2 37618 mbfresfi 37626 ftc1anclem5 37657 ghomco 37851 rngohomco 37934 tendococl 40729 mapco2g 42670 diophrw 42715 hausgraph 43166 sblpnf 44279 fcoss 45117 limccog 45541 mbfres2cn 45879 volioof 45908 volioofmpt 45915 voliooicof 45917 stoweidlem31 45952 stoweidlem59 45980 subsaliuncllem 46278 sge0resrnlem 46324 hoicvr 46469 ovolval2lem 46564 ovolval2 46565 ovolval3 46568 ovolval4lem1 46570 gricushgr 47770 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |