| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6720 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6740 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6739 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2740 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6703 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ◡ccnv 5666 “ cima 5670 ∘ ccom 5671 Fun wfun 6536 ⟶wf 6538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-fun 6544 df-fn 6545 df-f 6546 |
| This theorem is referenced by: fcod 6742 fco2 6743 mapen 9164 fsuppco2 9426 mapfienlem1 9428 unxpwdom2 9611 wemapwe 9720 cfcoflem 10295 isf34lem7 10402 isf34lem6 10403 inar1 10798 addnqf 10971 mulnqf 10972 axdc4uzlem 14007 seqf1olem2 14066 wrdco 14853 lenco 14854 lo1o1 15551 o1co 15605 caucvgrlem2 15694 fsumcl2lem 15750 fsumadd 15759 fsummulc2 15803 fsumrelem 15826 supcvg 15875 fprodcl2lem 15969 fprodmul 15979 fproddiv 15980 fprodn0 15998 algcvg 16596 cofucl 17909 setccatid 18105 estrccatid 18152 funcestrcsetclem9 18168 funcsetcestrclem9 18183 yonedalem3b 18299 mgmhmco 18701 mhmco 18810 pwsco1mhm 18819 pwsco2mhm 18820 gsumwmhm 18832 efmndcl 18869 f1omvdconj 19437 pmtrfinv 19452 symgtrinv 19463 psgnunilem1 19484 gsumval3lem1 19896 gsumval3 19898 gsumzcl2 19901 gsumzf1o 19903 gsumzaddlem 19912 gsumzmhm 19928 gsumzoppg 19935 gsumzinv 19936 gsumsub 19939 dprdf1o 20025 ablfaclem2 20079 cnfldds 21343 cnflddsOLD 21356 dsmmbas2 21724 f1lindf 21809 lindfmm 21814 psrnegcl 21941 coe1f2 22178 cpmadumatpolylem1 22854 cnco 23239 cnpco 23240 lmcnp 23277 cnmpt11 23636 cnmpt21 23644 qtopcn 23687 fmco 23934 flfcnp 23977 tsmsf1o 24118 tsmsmhm 24119 tsmssub 24122 imasdsf1olem 24347 nrmmetd 24550 isngp2 24573 isngp3 24574 tngngp2 24628 cnmet 24747 cnfldms 24751 cncfco 24888 cnfldcusp 25346 ovolfioo 25457 ovolficc 25458 ovolfsf 25461 ovollb 25469 ovolctb 25480 ovolicc2lem4 25510 ovolicc2 25512 volsup 25546 uniioovol 25569 uniioombllem3a 25574 uniioombllem3 25575 uniioombllem4 25576 uniioombllem5 25577 uniioombl 25579 mbfdm 25616 ismbfcn 25619 mbfres 25634 mbfimaopnlem 25645 cncombf 25648 limccnp 25881 dvcobrOLD 25939 dvcof 25941 dvcjbr 25942 dvcj 25943 dvmptco 25965 dvlip2 25989 itgsubstlem 26044 coecj 26273 coecjOLD 26275 pserulm 26420 jensenlem2 26986 jensen 26987 amgmlem 26988 gamf 27041 dchrinv 27260 motcgrg 28507 vsfval 30599 imsdf 30655 lnocoi 30723 hocofi 31732 homco1 31767 homco2 31943 hmopco 31989 kbass2 32083 kbass5 32086 opsqrlem1 32106 opsqrlem6 32111 pjinvari 32157 fmptco1f1o 32590 fcobij 32680 fcobijfs 32681 mbfmco 34207 dstfrvclim1 34421 reprpmtf1o 34582 mrsubco 35467 mclsppslem 35529 circum 35620 mblfinlem2 37606 mbfresfi 37614 ftc1anclem5 37645 ghomco 37839 rngohomco 37922 tendococl 40715 mapco2g 42670 diophrw 42715 hausgraph 43162 sblpnf 44274 fcoss 45160 limccog 45580 mbfres2cn 45918 volioof 45947 volioofmpt 45954 voliooicof 45956 stoweidlem31 45991 stoweidlem59 46019 subsaliuncllem 46317 sge0resrnlem 46363 hoicvr 46508 ovolval2lem 46603 ovolval2 46604 ovolval3 46607 ovolval4lem1 46609 gricushgr 47832 amgmwlem 49317 |
| Copyright terms: Public domain | W3C validator |