| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6673 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6693 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6692 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2735 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6654 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5630 “ cima 5634 ∘ ccom 5635 Fun wfun 6493 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 |
| This theorem is referenced by: fcod 6695 fco2 6696 mapen 9082 fsuppco2 9330 mapfienlem1 9332 unxpwdom2 9517 wemapwe 9626 cfcoflem 10201 isf34lem7 10308 isf34lem6 10309 inar1 10704 addnqf 10877 mulnqf 10878 axdc4uzlem 13924 seqf1olem2 13983 wrdco 14773 lenco 14774 lo1o1 15474 o1co 15528 caucvgrlem2 15617 fsumcl2lem 15673 fsumadd 15682 fsummulc2 15726 fsumrelem 15749 supcvg 15798 fprodcl2lem 15892 fprodmul 15902 fproddiv 15903 fprodn0 15921 algcvg 16522 cofucl 17826 setccatid 18022 estrccatid 18069 funcestrcsetclem9 18085 funcsetcestrclem9 18100 yonedalem3b 18216 mgmhmco 18617 mhmco 18726 pwsco1mhm 18735 pwsco2mhm 18736 gsumwmhm 18748 efmndcl 18785 f1omvdconj 19352 pmtrfinv 19367 symgtrinv 19378 psgnunilem1 19399 gsumval3lem1 19811 gsumval3 19813 gsumzcl2 19816 gsumzf1o 19818 gsumzaddlem 19827 gsumzmhm 19843 gsumzoppg 19850 gsumzinv 19851 gsumsub 19854 dprdf1o 19940 ablfaclem2 19994 cnfldds 21252 cnflddsOLD 21265 dsmmbas2 21622 f1lindf 21707 lindfmm 21712 psrnegcl 21839 coe1f2 22070 cpmadumatpolylem1 22744 cnco 23129 cnpco 23130 lmcnp 23167 cnmpt11 23526 cnmpt21 23534 qtopcn 23577 fmco 23824 flfcnp 23867 tsmsf1o 24008 tsmsmhm 24009 tsmssub 24012 imasdsf1olem 24237 nrmmetd 24438 isngp2 24461 isngp3 24462 tngngp2 24516 cnmet 24635 cnfldms 24639 cncfco 24776 cnfldcusp 25233 ovolfioo 25344 ovolficc 25345 ovolfsf 25348 ovollb 25356 ovolctb 25367 ovolicc2lem4 25397 ovolicc2 25399 volsup 25433 uniioovol 25456 uniioombllem3a 25461 uniioombllem3 25462 uniioombllem4 25463 uniioombllem5 25464 uniioombl 25466 mbfdm 25503 ismbfcn 25506 mbfres 25521 mbfimaopnlem 25532 cncombf 25535 limccnp 25768 dvcobrOLD 25826 dvcof 25828 dvcjbr 25829 dvcj 25830 dvmptco 25852 dvlip2 25876 itgsubstlem 25931 coecj 26160 coecjOLD 26162 pserulm 26307 jensenlem2 26874 jensen 26875 amgmlem 26876 gamf 26929 dchrinv 27148 motcgrg 28447 vsfval 30535 imsdf 30591 lnocoi 30659 hocofi 31668 homco1 31703 homco2 31879 hmopco 31925 kbass2 32019 kbass5 32022 opsqrlem1 32042 opsqrlem6 32047 pjinvari 32093 fmptco1f1o 32530 fcobij 32618 fcobijfs 32619 mbfmco 34228 dstfrvclim1 34442 reprpmtf1o 34590 mrsubco 35481 mclsppslem 35543 circum 35634 mblfinlem2 37625 mbfresfi 37633 ftc1anclem5 37664 ghomco 37858 rngohomco 37941 tendococl 40739 mapco2g 42675 diophrw 42720 hausgraph 43167 sblpnf 44272 fcoss 45177 limccog 45591 mbfres2cn 45929 volioof 45958 volioofmpt 45965 voliooicof 45967 stoweidlem31 46002 stoweidlem59 46030 subsaliuncllem 46328 sge0resrnlem 46374 hoicvr 46519 ovolval2lem 46614 ovolval2 46615 ovolval3 46618 ovolval4lem1 46620 gricushgr 47890 amgmwlem 49764 |
| Copyright terms: Public domain | W3C validator |