| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6714 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6734 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6733 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2742 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6697 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5658 “ cima 5662 ∘ ccom 5663 Fun wfun 6530 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: fcod 6736 fco2 6737 mapen 9160 fsuppco2 9420 mapfienlem1 9422 unxpwdom2 9607 wemapwe 9716 cfcoflem 10291 isf34lem7 10398 isf34lem6 10399 inar1 10794 addnqf 10967 mulnqf 10968 axdc4uzlem 14006 seqf1olem2 14065 wrdco 14855 lenco 14856 lo1o1 15553 o1co 15607 caucvgrlem2 15696 fsumcl2lem 15752 fsumadd 15761 fsummulc2 15805 fsumrelem 15828 supcvg 15877 fprodcl2lem 15971 fprodmul 15981 fproddiv 15982 fprodn0 16000 algcvg 16600 cofucl 17906 setccatid 18102 estrccatid 18149 funcestrcsetclem9 18165 funcsetcestrclem9 18180 yonedalem3b 18296 mgmhmco 18697 mhmco 18806 pwsco1mhm 18815 pwsco2mhm 18816 gsumwmhm 18828 efmndcl 18865 f1omvdconj 19432 pmtrfinv 19447 symgtrinv 19458 psgnunilem1 19479 gsumval3lem1 19891 gsumval3 19893 gsumzcl2 19896 gsumzf1o 19898 gsumzaddlem 19907 gsumzmhm 19923 gsumzoppg 19930 gsumzinv 19931 gsumsub 19934 dprdf1o 20020 ablfaclem2 20074 cnfldds 21332 cnflddsOLD 21345 dsmmbas2 21702 f1lindf 21787 lindfmm 21792 psrnegcl 21919 coe1f2 22150 cpmadumatpolylem1 22824 cnco 23209 cnpco 23210 lmcnp 23247 cnmpt11 23606 cnmpt21 23614 qtopcn 23657 fmco 23904 flfcnp 23947 tsmsf1o 24088 tsmsmhm 24089 tsmssub 24092 imasdsf1olem 24317 nrmmetd 24518 isngp2 24541 isngp3 24542 tngngp2 24596 cnmet 24715 cnfldms 24719 cncfco 24856 cnfldcusp 25314 ovolfioo 25425 ovolficc 25426 ovolfsf 25429 ovollb 25437 ovolctb 25448 ovolicc2lem4 25478 ovolicc2 25480 volsup 25514 uniioovol 25537 uniioombllem3a 25542 uniioombllem3 25543 uniioombllem4 25544 uniioombllem5 25545 uniioombl 25547 mbfdm 25584 ismbfcn 25587 mbfres 25602 mbfimaopnlem 25613 cncombf 25616 limccnp 25849 dvcobrOLD 25907 dvcof 25909 dvcjbr 25910 dvcj 25911 dvmptco 25933 dvlip2 25957 itgsubstlem 26012 coecj 26241 coecjOLD 26243 pserulm 26388 jensenlem2 26955 jensen 26956 amgmlem 26957 gamf 27010 dchrinv 27229 motcgrg 28528 vsfval 30619 imsdf 30675 lnocoi 30743 hocofi 31752 homco1 31787 homco2 31963 hmopco 32009 kbass2 32103 kbass5 32106 opsqrlem1 32126 opsqrlem6 32131 pjinvari 32177 fmptco1f1o 32616 fcobij 32704 fcobijfs 32705 mbfmco 34301 dstfrvclim1 34515 reprpmtf1o 34663 mrsubco 35548 mclsppslem 35610 circum 35701 mblfinlem2 37687 mbfresfi 37695 ftc1anclem5 37726 ghomco 37920 rngohomco 38003 tendococl 40796 mapco2g 42712 diophrw 42757 hausgraph 43204 sblpnf 44309 fcoss 45214 limccog 45629 mbfres2cn 45967 volioof 45996 volioofmpt 46003 voliooicof 46005 stoweidlem31 46040 stoweidlem59 46068 subsaliuncllem 46366 sge0resrnlem 46412 hoicvr 46557 ovolval2lem 46652 ovolval2 46653 ovolval3 46656 ovolval4lem1 46658 gricushgr 47910 amgmwlem 49646 |
| Copyright terms: Public domain | W3C validator |