![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6721 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
2 | fcof 6741 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
3 | 1, 2 | sylan2 594 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
4 | fimacnv 6740 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
5 | 4 | eqcomd 2739 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | 6 | feq2d 6704 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ◡ccnv 5676 “ cima 5680 ∘ ccom 5681 Fun wfun 6538 ⟶wf 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-fun 6546 df-fn 6547 df-f 6548 |
This theorem is referenced by: fcod 6744 fco2 6745 f1coOLD 6801 mapen 9141 fsuppco2 9398 mapfienlem1 9400 unxpwdom2 9583 wemapwe 9692 cfcoflem 10267 isf34lem7 10374 isf34lem6 10375 inar1 10770 addnqf 10943 mulnqf 10944 axdc4uzlem 13948 seqf1olem2 14008 wrdco 14782 lenco 14783 lo1o1 15476 o1co 15530 caucvgrlem2 15621 fsumcl2lem 15677 fsumadd 15686 fsummulc2 15730 fsumrelem 15753 supcvg 15802 fprodcl2lem 15894 fprodmul 15904 fproddiv 15905 fprodn0 15923 algcvg 16513 cofucl 17838 setccatid 18034 estrccatid 18083 funcestrcsetclem9 18100 funcsetcestrclem9 18115 yonedalem3b 18232 mhmco 18704 pwsco1mhm 18713 pwsco2mhm 18714 gsumwmhm 18726 efmndcl 18763 f1omvdconj 19314 pmtrfinv 19329 symgtrinv 19340 psgnunilem1 19361 gsumval3lem1 19773 gsumval3 19775 gsumzcl2 19778 gsumzf1o 19780 gsumzaddlem 19789 gsumzmhm 19805 gsumzoppg 19812 gsumzinv 19813 gsumsub 19816 dprdf1o 19902 ablfaclem2 19956 cnfldds 20954 dsmmbas2 21292 f1lindf 21377 lindfmm 21382 psrass1lemOLD 21493 psrnegcl 21515 coe1f2 21733 cpmadumatpolylem1 22383 cnco 22770 cnpco 22771 lmcnp 22808 cnmpt11 23167 cnmpt21 23175 qtopcn 23218 fmco 23465 flfcnp 23508 tsmsf1o 23649 tsmsmhm 23650 tsmssub 23653 imasdsf1olem 23879 nrmmetd 24083 isngp2 24106 isngp3 24107 tngngp2 24169 cnmet 24288 cnfldms 24292 cncfco 24423 cnfldcusp 24874 ovolfioo 24984 ovolficc 24985 ovolfsf 24988 ovollb 24996 ovolctb 25007 ovolicc2lem4 25037 ovolicc2 25039 volsup 25073 uniioovol 25096 uniioombllem3a 25101 uniioombllem3 25102 uniioombllem4 25103 uniioombllem5 25104 uniioombl 25106 mbfdm 25143 ismbfcn 25146 mbfres 25161 mbfimaopnlem 25172 cncombf 25175 limccnp 25408 dvcobr 25463 dvcof 25465 dvcjbr 25466 dvcj 25467 dvmptco 25489 dvlip2 25512 itgsubstlem 25565 coecj 25792 pserulm 25934 jensenlem2 26492 jensen 26493 amgmlem 26494 gamf 26547 dchrinv 26764 motcgrg 27795 vsfval 29886 imsdf 29942 lnocoi 30010 hocofi 31019 homco1 31054 homco2 31230 hmopco 31276 kbass2 31370 kbass5 31373 opsqrlem1 31393 opsqrlem6 31398 pjinvari 31444 fmptco1f1o 31857 fcobij 31947 fcobijfs 31948 mbfmco 33263 dstfrvclim1 33476 reprpmtf1o 33638 mrsubco 34512 mclsppslem 34574 circum 34659 mblfinlem2 36526 mbfresfi 36534 ftc1anclem5 36565 ghomco 36759 rngohomco 36842 tendococl 39643 mapco2g 41452 diophrw 41497 hausgraph 41954 sblpnf 43069 fcoss 43909 limccog 44336 mbfres2cn 44674 volioof 44703 volioofmpt 44710 voliooicof 44712 stoweidlem31 44747 stoweidlem59 44775 subsaliuncllem 45073 sge0resrnlem 45119 hoicvr 45264 ovolval2lem 45359 ovolval2 45360 ovolval3 45363 ovolval4lem1 45365 isomushgr 46494 mgmhmco 46571 amgmwlem 47849 |
Copyright terms: Public domain | W3C validator |