| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6659 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6679 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6678 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2735 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6640 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5622 “ cima 5626 ∘ ccom 5627 Fun wfun 6480 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: fcod 6681 fco2 6682 mapen 9065 fsuppco2 9312 mapfienlem1 9314 unxpwdom2 9499 wemapwe 9612 cfcoflem 10185 isf34lem7 10292 isf34lem6 10293 inar1 10688 addnqf 10861 mulnqf 10862 axdc4uzlem 13909 seqf1olem2 13968 wrdco 14757 lenco 14758 lo1o1 15458 o1co 15512 caucvgrlem2 15601 fsumcl2lem 15657 fsumadd 15666 fsummulc2 15710 fsumrelem 15733 supcvg 15782 fprodcl2lem 15876 fprodmul 15886 fproddiv 15887 fprodn0 15905 algcvg 16506 cofucl 17814 setccatid 18010 estrccatid 18057 funcestrcsetclem9 18073 funcsetcestrclem9 18088 yonedalem3b 18204 mgmhmco 18607 mhmco 18716 pwsco1mhm 18725 pwsco2mhm 18726 gsumwmhm 18738 efmndcl 18775 f1omvdconj 19344 pmtrfinv 19359 symgtrinv 19370 psgnunilem1 19391 gsumval3lem1 19803 gsumval3 19805 gsumzcl2 19808 gsumzf1o 19810 gsumzaddlem 19819 gsumzmhm 19835 gsumzoppg 19842 gsumzinv 19843 gsumsub 19846 dprdf1o 19932 ablfaclem2 19986 cnfldds 21292 cnflddsOLD 21305 dsmmbas2 21663 f1lindf 21748 lindfmm 21753 psrnegcl 21880 coe1f2 22111 cpmadumatpolylem1 22785 cnco 23170 cnpco 23171 lmcnp 23208 cnmpt11 23567 cnmpt21 23575 qtopcn 23618 fmco 23865 flfcnp 23908 tsmsf1o 24049 tsmsmhm 24050 tsmssub 24053 imasdsf1olem 24278 nrmmetd 24479 isngp2 24502 isngp3 24503 tngngp2 24557 cnmet 24676 cnfldms 24680 cncfco 24817 cnfldcusp 25274 ovolfioo 25385 ovolficc 25386 ovolfsf 25389 ovollb 25397 ovolctb 25408 ovolicc2lem4 25438 ovolicc2 25440 volsup 25474 uniioovol 25497 uniioombllem3a 25502 uniioombllem3 25503 uniioombllem4 25504 uniioombllem5 25505 uniioombl 25507 mbfdm 25544 ismbfcn 25547 mbfres 25562 mbfimaopnlem 25573 cncombf 25576 limccnp 25809 dvcobrOLD 25867 dvcof 25869 dvcjbr 25870 dvcj 25871 dvmptco 25893 dvlip2 25917 itgsubstlem 25972 coecj 26201 coecjOLD 26203 pserulm 26348 jensenlem2 26915 jensen 26916 amgmlem 26917 gamf 26970 dchrinv 27189 motcgrg 28508 vsfval 30596 imsdf 30652 lnocoi 30720 hocofi 31729 homco1 31764 homco2 31940 hmopco 31986 kbass2 32080 kbass5 32083 opsqrlem1 32103 opsqrlem6 32108 pjinvari 32154 fmptco1f1o 32595 fcobij 32683 fcobijfs 32684 fcobijfs2 32685 mbfmco 34251 dstfrvclim1 34465 reprpmtf1o 34613 mrsubco 35513 mclsppslem 35575 circum 35666 mblfinlem2 37657 mbfresfi 37665 ftc1anclem5 37696 ghomco 37890 rngohomco 37973 tendococl 40771 mapco2g 42707 diophrw 42752 hausgraph 43198 sblpnf 44303 fcoss 45208 limccog 45621 mbfres2cn 45959 volioof 45988 volioofmpt 45995 voliooicof 45997 stoweidlem31 46032 stoweidlem59 46060 subsaliuncllem 46358 sge0resrnlem 46404 hoicvr 46549 ovolval2lem 46644 ovolval2 46645 ovolval3 46648 ovolval4lem1 46650 gricushgr 47921 amgmwlem 49807 |
| Copyright terms: Public domain | W3C validator |