| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6662 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6682 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6681 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2739 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6643 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ◡ccnv 5620 “ cima 5624 ∘ ccom 5625 Fun wfun 6483 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: fcod 6684 fco2 6685 mapen 9065 fsuppco2 9298 mapfienlem1 9300 unxpwdom2 9485 wemapwe 9598 cfcoflem 10174 isf34lem7 10281 isf34lem6 10282 inar1 10677 addnqf 10850 mulnqf 10851 axdc4uzlem 13897 seqf1olem2 13956 wrdco 14745 lenco 14746 lo1o1 15446 o1co 15500 caucvgrlem2 15589 fsumcl2lem 15645 fsumadd 15654 fsummulc2 15698 fsumrelem 15721 supcvg 15770 fprodcl2lem 15864 fprodmul 15874 fproddiv 15875 fprodn0 15893 algcvg 16494 cofucl 17803 setccatid 17999 estrccatid 18046 funcestrcsetclem9 18062 funcsetcestrclem9 18077 yonedalem3b 18193 mgmhmco 18630 mhmco 18739 pwsco1mhm 18748 pwsco2mhm 18749 gsumwmhm 18761 efmndcl 18798 f1omvdconj 19366 pmtrfinv 19381 symgtrinv 19392 psgnunilem1 19413 gsumval3lem1 19825 gsumval3 19827 gsumzcl2 19830 gsumzf1o 19832 gsumzaddlem 19841 gsumzmhm 19857 gsumzoppg 19864 gsumzinv 19865 gsumsub 19868 dprdf1o 19954 ablfaclem2 20008 cnfldds 21312 cnflddsOLD 21325 dsmmbas2 21683 f1lindf 21768 lindfmm 21773 psrnegcl 21901 coe1f2 22141 cpmadumatpolylem1 22816 cnco 23201 cnpco 23202 lmcnp 23239 cnmpt11 23598 cnmpt21 23606 qtopcn 23649 fmco 23896 flfcnp 23939 tsmsf1o 24080 tsmsmhm 24081 tsmssub 24084 imasdsf1olem 24308 nrmmetd 24509 isngp2 24532 isngp3 24533 tngngp2 24587 cnmet 24706 cnfldms 24710 cncfco 24847 cnfldcusp 25304 ovolfioo 25415 ovolficc 25416 ovolfsf 25419 ovollb 25427 ovolctb 25438 ovolicc2lem4 25468 ovolicc2 25470 volsup 25504 uniioovol 25527 uniioombllem3a 25532 uniioombllem3 25533 uniioombllem4 25534 uniioombllem5 25535 uniioombl 25537 mbfdm 25574 ismbfcn 25577 mbfres 25592 mbfimaopnlem 25603 cncombf 25606 limccnp 25839 dvcobrOLD 25897 dvcof 25899 dvcjbr 25900 dvcj 25901 dvmptco 25923 dvlip2 25947 itgsubstlem 26002 coecj 26231 coecjOLD 26233 pserulm 26378 jensenlem2 26945 jensen 26946 amgmlem 26947 gamf 27000 dchrinv 27219 motcgrg 28542 vsfval 30634 imsdf 30690 lnocoi 30758 hocofi 31767 homco1 31802 homco2 31978 hmopco 32024 kbass2 32118 kbass5 32121 opsqrlem1 32141 opsqrlem6 32146 pjinvari 32192 fmptco1f1o 32637 fcobij 32727 fcobijfs 32728 fcobijfs2 32729 mbfmco 34349 dstfrvclim1 34563 reprpmtf1o 34711 mrsubco 35637 mclsppslem 35699 circum 35790 mblfinlem2 37771 mbfresfi 37779 ftc1anclem5 37810 ghomco 38004 rngohomco 38087 tendococl 40944 mapco2g 42871 diophrw 42916 hausgraph 43362 sblpnf 44467 fcoss 45370 limccog 45782 mbfres2cn 46118 volioof 46147 volioofmpt 46154 voliooicof 46156 stoweidlem31 46191 stoweidlem59 46219 subsaliuncllem 46517 sge0resrnlem 46563 hoicvr 46708 ovolval2lem 46803 ovolval2 46804 ovolval3 46807 ovolval4lem1 46809 gricushgr 48079 amgmwlem 49963 |
| Copyright terms: Public domain | W3C validator |