![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6740 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
2 | fcof 6760 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
4 | fimacnv 6759 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
5 | 4 | eqcomd 2741 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
7 | 6 | feq2d 6723 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ◡ccnv 5688 “ cima 5692 ∘ ccom 5693 Fun wfun 6557 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: fcod 6762 fco2 6763 mapen 9180 fsuppco2 9441 mapfienlem1 9443 unxpwdom2 9626 wemapwe 9735 cfcoflem 10310 isf34lem7 10417 isf34lem6 10418 inar1 10813 addnqf 10986 mulnqf 10987 axdc4uzlem 14021 seqf1olem2 14080 wrdco 14867 lenco 14868 lo1o1 15565 o1co 15619 caucvgrlem2 15708 fsumcl2lem 15764 fsumadd 15773 fsummulc2 15817 fsumrelem 15840 supcvg 15889 fprodcl2lem 15983 fprodmul 15993 fproddiv 15994 fprodn0 16012 algcvg 16610 cofucl 17939 setccatid 18138 estrccatid 18187 funcestrcsetclem9 18204 funcsetcestrclem9 18219 yonedalem3b 18336 mgmhmco 18740 mhmco 18849 pwsco1mhm 18858 pwsco2mhm 18859 gsumwmhm 18871 efmndcl 18908 f1omvdconj 19479 pmtrfinv 19494 symgtrinv 19505 psgnunilem1 19526 gsumval3lem1 19938 gsumval3 19940 gsumzcl2 19943 gsumzf1o 19945 gsumzaddlem 19954 gsumzmhm 19970 gsumzoppg 19977 gsumzinv 19978 gsumsub 19981 dprdf1o 20067 ablfaclem2 20121 cnfldds 21394 cnflddsOLD 21407 dsmmbas2 21775 f1lindf 21860 lindfmm 21865 psrnegcl 21992 coe1f2 22227 cpmadumatpolylem1 22903 cnco 23290 cnpco 23291 lmcnp 23328 cnmpt11 23687 cnmpt21 23695 qtopcn 23738 fmco 23985 flfcnp 24028 tsmsf1o 24169 tsmsmhm 24170 tsmssub 24173 imasdsf1olem 24399 nrmmetd 24603 isngp2 24626 isngp3 24627 tngngp2 24689 cnmet 24808 cnfldms 24812 cncfco 24947 cnfldcusp 25405 ovolfioo 25516 ovolficc 25517 ovolfsf 25520 ovollb 25528 ovolctb 25539 ovolicc2lem4 25569 ovolicc2 25571 volsup 25605 uniioovol 25628 uniioombllem3a 25633 uniioombllem3 25634 uniioombllem4 25635 uniioombllem5 25636 uniioombl 25638 mbfdm 25675 ismbfcn 25678 mbfres 25693 mbfimaopnlem 25704 cncombf 25707 limccnp 25941 dvcobrOLD 25999 dvcof 26001 dvcjbr 26002 dvcj 26003 dvmptco 26025 dvlip2 26049 itgsubstlem 26104 coecj 26333 coecjOLD 26335 pserulm 26480 jensenlem2 27046 jensen 27047 amgmlem 27048 gamf 27101 dchrinv 27320 motcgrg 28567 vsfval 30662 imsdf 30718 lnocoi 30786 hocofi 31795 homco1 31830 homco2 32006 hmopco 32052 kbass2 32146 kbass5 32149 opsqrlem1 32169 opsqrlem6 32174 pjinvari 32220 fmptco1f1o 32650 fcobij 32740 fcobijfs 32741 mbfmco 34246 dstfrvclim1 34459 reprpmtf1o 34620 mrsubco 35506 mclsppslem 35568 circum 35659 mblfinlem2 37645 mbfresfi 37653 ftc1anclem5 37684 ghomco 37878 rngohomco 37961 tendococl 40755 mapco2g 42702 diophrw 42747 hausgraph 43194 sblpnf 44306 fcoss 45153 limccog 45576 mbfres2cn 45914 volioof 45943 volioofmpt 45950 voliooicof 45952 stoweidlem31 45987 stoweidlem59 46015 subsaliuncllem 46313 sge0resrnlem 46359 hoicvr 46504 ovolval2lem 46599 ovolval2 46600 ovolval3 46603 ovolval4lem1 46605 gricushgr 47824 amgmwlem 49033 |
Copyright terms: Public domain | W3C validator |