| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version | ||
| Description: Composition of two functions with domain and codomain as a function with domain and codomain. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Proof shortened by AV, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6649 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 → Fun 𝐺) | |
| 2 | fcof 6669 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ Fun 𝐺) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶) |
| 4 | fimacnv 6668 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → (◡𝐺 “ 𝐵) = 𝐴) | |
| 5 | 4 | eqcomd 2737 | . . . 4 ⊢ (𝐺:𝐴⟶𝐵 → 𝐴 = (◡𝐺 “ 𝐵)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → 𝐴 = (◡𝐺 “ 𝐵)) |
| 7 | 6 | feq2d 6630 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ (𝐹 ∘ 𝐺):(◡𝐺 “ 𝐵)⟶𝐶)) |
| 8 | 3, 7 | mpbird 257 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ◡ccnv 5610 “ cima 5614 ∘ ccom 5615 Fun wfun 6470 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 |
| This theorem is referenced by: fcod 6671 fco2 6672 mapen 9049 fsuppco2 9282 mapfienlem1 9284 unxpwdom2 9469 wemapwe 9582 cfcoflem 10158 isf34lem7 10265 isf34lem6 10266 inar1 10661 addnqf 10834 mulnqf 10835 axdc4uzlem 13885 seqf1olem2 13944 wrdco 14733 lenco 14734 lo1o1 15434 o1co 15488 caucvgrlem2 15577 fsumcl2lem 15633 fsumadd 15642 fsummulc2 15686 fsumrelem 15709 supcvg 15758 fprodcl2lem 15852 fprodmul 15862 fproddiv 15863 fprodn0 15881 algcvg 16482 cofucl 17790 setccatid 17986 estrccatid 18033 funcestrcsetclem9 18049 funcsetcestrclem9 18064 yonedalem3b 18180 mgmhmco 18617 mhmco 18726 pwsco1mhm 18735 pwsco2mhm 18736 gsumwmhm 18748 efmndcl 18785 f1omvdconj 19353 pmtrfinv 19368 symgtrinv 19379 psgnunilem1 19400 gsumval3lem1 19812 gsumval3 19814 gsumzcl2 19817 gsumzf1o 19819 gsumzaddlem 19828 gsumzmhm 19844 gsumzoppg 19851 gsumzinv 19852 gsumsub 19855 dprdf1o 19941 ablfaclem2 19995 cnfldds 21298 cnflddsOLD 21311 dsmmbas2 21669 f1lindf 21754 lindfmm 21759 psrnegcl 21886 coe1f2 22117 cpmadumatpolylem1 22791 cnco 23176 cnpco 23177 lmcnp 23214 cnmpt11 23573 cnmpt21 23581 qtopcn 23624 fmco 23871 flfcnp 23914 tsmsf1o 24055 tsmsmhm 24056 tsmssub 24059 imasdsf1olem 24283 nrmmetd 24484 isngp2 24507 isngp3 24508 tngngp2 24562 cnmet 24681 cnfldms 24685 cncfco 24822 cnfldcusp 25279 ovolfioo 25390 ovolficc 25391 ovolfsf 25394 ovollb 25402 ovolctb 25413 ovolicc2lem4 25443 ovolicc2 25445 volsup 25479 uniioovol 25502 uniioombllem3a 25507 uniioombllem3 25508 uniioombllem4 25509 uniioombllem5 25510 uniioombl 25512 mbfdm 25549 ismbfcn 25552 mbfres 25567 mbfimaopnlem 25578 cncombf 25581 limccnp 25814 dvcobrOLD 25872 dvcof 25874 dvcjbr 25875 dvcj 25876 dvmptco 25898 dvlip2 25922 itgsubstlem 25977 coecj 26206 coecjOLD 26208 pserulm 26353 jensenlem2 26920 jensen 26921 amgmlem 26922 gamf 26975 dchrinv 27194 motcgrg 28517 vsfval 30605 imsdf 30661 lnocoi 30729 hocofi 31738 homco1 31773 homco2 31949 hmopco 31995 kbass2 32089 kbass5 32092 opsqrlem1 32112 opsqrlem6 32117 pjinvari 32163 fmptco1f1o 32607 fcobij 32695 fcobijfs 32696 fcobijfs2 32697 mbfmco 34269 dstfrvclim1 34483 reprpmtf1o 34631 mrsubco 35557 mclsppslem 35619 circum 35710 mblfinlem2 37698 mbfresfi 37706 ftc1anclem5 37737 ghomco 37931 rngohomco 38014 tendococl 40811 mapco2g 42747 diophrw 42792 hausgraph 43238 sblpnf 44343 fcoss 45247 limccog 45660 mbfres2cn 45996 volioof 46025 volioofmpt 46032 voliooicof 46034 stoweidlem31 46069 stoweidlem59 46097 subsaliuncllem 46395 sge0resrnlem 46441 hoicvr 46586 ovolval2lem 46681 ovolval2 46682 ovolval3 46685 ovolval4lem1 46687 gricushgr 47948 amgmwlem 49834 |
| Copyright terms: Public domain | W3C validator |