| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcod | Structured version Visualization version GIF version | ||
| Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fcod.1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| fcod.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcod.1 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 2 | fcod.2 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 3 | fco 6740 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∘ ccom 5669 ⟶wf 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6543 df-fn 6544 df-f 6545 |
| This theorem is referenced by: suppcoss 8214 mapen 9163 mapfienlem3 9429 mapfien 9430 cofsmo 10291 canthp1lem2 10675 gsumval3lem2 19892 psrass1lem 21906 psdmplcl 22114 mhmcompl 22332 comet 24470 dvcobr 25919 wrdpmcl 32862 gsumpart 32999 elrgspnlem1 33185 1arithidomlem2 33499 1arithidom 33500 subfacp1lem5 35148 metakunt33 42197 mapcod 42242 mhmcopsr 42522 selvvvval 42558 itcovalendof 48548 fucoid 49019 |
| Copyright terms: Public domain | W3C validator |