| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcod | Structured version Visualization version GIF version | ||
| Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fcod.1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| fcod.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcod.1 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 2 | fcod.2 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 3 | fco 6715 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∘ ccom 5645 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: suppcoss 8189 mapen 9111 mapfienlem3 9365 mapfien 9366 cofsmo 10229 canthp1lem2 10613 gsumval3lem2 19843 psrass1lem 21848 psdmplcl 22056 mhmcompl 22274 comet 24408 dvcobr 25856 wrdpmcl 32866 gsumpart 33004 elrgspnlem1 33200 1arithidomlem2 33514 1arithidom 33515 subfacp1lem5 35178 mapcod 42238 mhmcopsr 42544 selvvvval 42580 upgrimwlklem4 47904 itcovalendof 48662 fucoid 49341 |
| Copyright terms: Public domain | W3C validator |