| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcod | Structured version Visualization version GIF version | ||
| Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fcod.1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| fcod.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcod.1 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 2 | fcod.2 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 3 | fco 6680 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∘ ccom 5623 ⟶wf 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 |
| This theorem is referenced by: suppcoss 8143 mapen 9061 mapfienlem3 9298 mapfien 9299 cofsmo 10167 canthp1lem2 10551 gsumval3lem2 19820 psrass1lem 21871 psdmplcl 22078 mhmcompl 22296 comet 24429 dvcobr 25877 wrdpmcl 32926 gsumpart 33044 elrgspnlem1 33216 1arithidomlem2 33508 1arithidom 33509 mplvrpmlem 33591 mplvrpmfgalem 33592 mplvrpmga 33593 mplvrpmmhm 33594 mplvrpmrhm 33595 esplympl 33607 esplysply 33611 subfacp1lem5 35249 mapcod 42361 mhmcopsr 42667 selvvvval 42703 chnsubseqword 47000 upgrimwlklem4 48024 itcovalendof 48794 fucoid 49473 |
| Copyright terms: Public domain | W3C validator |