| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcod | Structured version Visualization version GIF version | ||
| Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fcod.1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| fcod.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcod.1 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 2 | fcod.2 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 3 | fco 6735 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∘ ccom 5663 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: suppcoss 8211 mapen 9160 mapfienlem3 9424 mapfien 9425 cofsmo 10288 canthp1lem2 10672 gsumval3lem2 19892 psrass1lem 21897 psdmplcl 22105 mhmcompl 22323 comet 24457 dvcobr 25906 wrdpmcl 32918 gsumpart 33056 elrgspnlem1 33242 1arithidomlem2 33556 1arithidom 33557 subfacp1lem5 35211 mapcod 42261 mhmcopsr 42539 selvvvval 42575 upgrimwlklem4 47880 itcovalendof 48616 fucoid 49226 |
| Copyright terms: Public domain | W3C validator |