MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcod Structured version   Visualization version   GIF version

Theorem fcod 6681
Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fcod.1 (𝜑𝐹:𝐵𝐶)
fcod.2 (𝜑𝐺:𝐴𝐵)
Assertion
Ref Expression
fcod (𝜑 → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fcod
StepHypRef Expression
1 fcod.1 . 2 (𝜑𝐹:𝐵𝐶)
2 fcod.2 . 2 (𝜑𝐺:𝐴𝐵)
3 fco 6680 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccom 5623  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6488  df-fn 6489  df-f 6490
This theorem is referenced by:  suppcoss  8143  mapen  9061  mapfienlem3  9298  mapfien  9299  cofsmo  10167  canthp1lem2  10551  gsumval3lem2  19820  psrass1lem  21871  psdmplcl  22078  mhmcompl  22296  comet  24429  dvcobr  25877  wrdpmcl  32926  gsumpart  33044  elrgspnlem1  33216  1arithidomlem2  33508  1arithidom  33509  mplvrpmlem  33591  mplvrpmfgalem  33592  mplvrpmga  33593  mplvrpmmhm  33594  mplvrpmrhm  33595  esplympl  33607  esplysply  33611  subfacp1lem5  35249  mapcod  42361  mhmcopsr  42667  selvvvval  42703  chnsubseqword  47000  upgrimwlklem4  48024  itcovalendof  48794  fucoid  49473
  Copyright terms: Public domain W3C validator