MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcod Structured version   Visualization version   GIF version

Theorem fcod 6762
Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
fcod.1 (𝜑𝐹:𝐵𝐶)
fcod.2 (𝜑𝐺:𝐴𝐵)
Assertion
Ref Expression
fcod (𝜑 → (𝐹𝐺):𝐴𝐶)

Proof of Theorem fcod
StepHypRef Expression
1 fcod.1 . 2 (𝜑𝐹:𝐵𝐶)
2 fcod.2 . 2 (𝜑𝐺:𝐴𝐵)
3 fco 6761 . 2 ((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
41, 2, 3syl2anc 584 1 (𝜑 → (𝐹𝐺):𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccom 5693  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  suppcoss  8231  mapen  9180  mapfienlem3  9445  mapfien  9446  cofsmo  10307  canthp1lem2  10691  gsumval3lem2  19939  psrass1lem  21970  psdmplcl  22184  mhmcompl  22400  comet  24542  dvcobr  25998  wrdpmcl  32907  gsumpart  33043  elrgspnlem1  33232  1arithidomlem2  33544  1arithidom  33545  subfacp1lem5  35169  metakunt33  42219  mapcod  42263  mhmcopsr  42536  selvvvval  42572  itcovalendof  48519
  Copyright terms: Public domain W3C validator