| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fcod | Structured version Visualization version GIF version | ||
| Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| fcod.1 | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| fcod.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| fcod | ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcod.1 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 2 | fcod.2 | . 2 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 3 | fco 6675 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∘ ccom 5620 ⟶wf 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-f 6485 |
| This theorem is referenced by: suppcoss 8137 mapen 9054 mapfienlem3 9291 mapfien 9292 cofsmo 10157 canthp1lem2 10541 gsumval3lem2 19816 psrass1lem 21867 psdmplcl 22075 mhmcompl 22293 comet 24426 dvcobr 25874 wrdpmcl 32914 gsumpart 33032 elrgspnlem1 33204 1arithidomlem2 33496 1arithidom 33497 mplvrpmlem 33568 mplvrpmfgalem 33569 mplvrpmga 33570 mplvrpmmhm 33571 mplvrpmrhm 33572 esplympl 33583 esplysply 33587 subfacp1lem5 35216 mapcod 42275 mhmcopsr 42581 selvvvval 42617 upgrimwlklem4 47930 itcovalendof 48700 fucoid 49379 |
| Copyright terms: Public domain | W3C validator |