Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ffun | Structured version Visualization version GIF version |
Description: A mapping is a function. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
ffun | ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6496 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
2 | fnfun 6432 | . 2 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) |
Copyright terms: Public domain | W3C validator |