MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem3 Structured version   Visualization version   GIF version

Theorem fin1a2lem3 10304
Description: Lemma for fin1a2 10317. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
Assertion
Ref Expression
fin1a2lem3 (𝐴 ∈ ω → (𝐸𝐴) = (2o ·o 𝐴))

Proof of Theorem fin1a2lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7363 . 2 (𝑎 = 𝐴 → (2o ·o 𝑎) = (2o ·o 𝐴))
2 fin1a2lem.b . . 3 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
3 oveq2 7363 . . . 4 (𝑥 = 𝑎 → (2o ·o 𝑥) = (2o ·o 𝑎))
43cbvmptv 5199 . . 3 (𝑥 ∈ ω ↦ (2o ·o 𝑥)) = (𝑎 ∈ ω ↦ (2o ·o 𝑎))
52, 4eqtri 2756 . 2 𝐸 = (𝑎 ∈ ω ↦ (2o ·o 𝑎))
6 ovex 7388 . 2 (2o ·o 𝐴) ∈ V
71, 5, 6fvmpt 6938 1 (𝐴 ∈ ω → (𝐸𝐴) = (2o ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cmpt 5176  cfv 6489  (class class class)co 7355  ωcom 7805  2oc2o 8388   ·o comu 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358
This theorem is referenced by:  fin1a2lem4  10305  fin1a2lem5  10306  fin1a2lem6  10307
  Copyright terms: Public domain W3C validator