| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10429. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
| Ref | Expression |
|---|---|
| fin1a2lem3 | ⊢ (𝐴 ∈ ω → (𝐸‘𝐴) = (2o ·o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7413 | . 2 ⊢ (𝑎 = 𝐴 → (2o ·o 𝑎) = (2o ·o 𝐴)) | |
| 2 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
| 3 | oveq2 7413 | . . . 4 ⊢ (𝑥 = 𝑎 → (2o ·o 𝑥) = (2o ·o 𝑎)) | |
| 4 | 3 | cbvmptv 5225 | . . 3 ⊢ (𝑥 ∈ ω ↦ (2o ·o 𝑥)) = (𝑎 ∈ ω ↦ (2o ·o 𝑎)) |
| 5 | 2, 4 | eqtri 2758 | . 2 ⊢ 𝐸 = (𝑎 ∈ ω ↦ (2o ·o 𝑎)) |
| 6 | ovex 7438 | . 2 ⊢ (2o ·o 𝐴) ∈ V | |
| 7 | 1, 5, 6 | fvmpt 6986 | 1 ⊢ (𝐴 ∈ ω → (𝐸‘𝐴) = (2o ·o 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ωcom 7861 2oc2o 8474 ·o comu 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: fin1a2lem4 10417 fin1a2lem5 10418 fin1a2lem6 10419 |
| Copyright terms: Public domain | W3C validator |