![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem3 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 9552. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem3 | ⊢ (𝐴 ∈ ω → (𝐸‘𝐴) = (2o ·o 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6913 | . 2 ⊢ (𝑎 = 𝐴 → (2o ·o 𝑎) = (2o ·o 𝐴)) | |
2 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
3 | oveq2 6913 | . . . 4 ⊢ (𝑥 = 𝑎 → (2o ·o 𝑥) = (2o ·o 𝑎)) | |
4 | 3 | cbvmptv 4973 | . . 3 ⊢ (𝑥 ∈ ω ↦ (2o ·o 𝑥)) = (𝑎 ∈ ω ↦ (2o ·o 𝑎)) |
5 | 2, 4 | eqtri 2849 | . 2 ⊢ 𝐸 = (𝑎 ∈ ω ↦ (2o ·o 𝑎)) |
6 | ovex 6937 | . 2 ⊢ (2o ·o 𝐴) ∈ V | |
7 | 1, 5, 6 | fvmpt 6529 | 1 ⊢ (𝐴 ∈ ω → (𝐸‘𝐴) = (2o ·o 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ↦ cmpt 4952 ‘cfv 6123 (class class class)co 6905 ωcom 7326 2oc2o 7820 ·o comu 7824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-iota 6086 df-fun 6125 df-fv 6131 df-ov 6908 |
This theorem is referenced by: fin1a2lem4 9540 fin1a2lem5 9541 fin1a2lem6 9542 |
Copyright terms: Public domain | W3C validator |