MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem3 Structured version   Visualization version   GIF version

Theorem fin1a2lem3 10439
Description: Lemma for fin1a2 10452. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
Assertion
Ref Expression
fin1a2lem3 (𝐴 ∈ ω → (𝐸𝐴) = (2o ·o 𝐴))

Proof of Theorem fin1a2lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . 2 (𝑎 = 𝐴 → (2o ·o 𝑎) = (2o ·o 𝐴))
2 fin1a2lem.b . . 3 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
3 oveq2 7438 . . . 4 (𝑥 = 𝑎 → (2o ·o 𝑥) = (2o ·o 𝑎))
43cbvmptv 5260 . . 3 (𝑥 ∈ ω ↦ (2o ·o 𝑥)) = (𝑎 ∈ ω ↦ (2o ·o 𝑎))
52, 4eqtri 2762 . 2 𝐸 = (𝑎 ∈ ω ↦ (2o ·o 𝑎))
6 ovex 7463 . 2 (2o ·o 𝐴) ∈ V
71, 5, 6fvmpt 7015 1 (𝐴 ∈ ω → (𝐸𝐴) = (2o ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  cmpt 5230  cfv 6562  (class class class)co 7430  ωcom 7886  2oc2o 8498   ·o comu 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433
This theorem is referenced by:  fin1a2lem4  10440  fin1a2lem5  10441  fin1a2lem6  10442
  Copyright terms: Public domain W3C validator