Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1a2lem2 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10171. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
fin1a2lem2 | ⊢ 𝑆:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.a | . . 3 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
2 | suceloni 7659 | . . 3 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
3 | 1, 2 | fmpti 6986 | . 2 ⊢ 𝑆:On⟶On |
4 | 1 | fin1a2lem1 10156 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑆‘𝑎) = suc 𝑎) |
5 | 1 | fin1a2lem1 10156 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑆‘𝑏) = suc 𝑏) |
6 | 4, 5 | eqeqan12d 2752 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
7 | suc11 6369 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
8 | 6, 7 | bitrd 278 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ 𝑎 = 𝑏)) |
9 | 8 | biimpd 228 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏)) |
10 | 9 | rgen2 3120 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏) |
11 | dff13 7128 | . 2 ⊢ (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏))) | |
12 | 3, 10, 11 | mpbir2an 708 | 1 ⊢ 𝑆:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 Oncon0 6266 suc csuc 6268 ⟶wf 6429 –1-1→wf1 6430 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fv 6441 |
This theorem is referenced by: fin1a2lem6 10161 |
Copyright terms: Public domain | W3C validator |