| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10429. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| fin1a2lem2 | ⊢ 𝑆:On–1-1→On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.a | . . 3 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 2 | onsuc 7805 | . . 3 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 3 | 1, 2 | fmpti 7102 | . 2 ⊢ 𝑆:On⟶On |
| 4 | 1 | fin1a2lem1 10414 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑆‘𝑎) = suc 𝑎) |
| 5 | 1 | fin1a2lem1 10414 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑆‘𝑏) = suc 𝑏) |
| 6 | 4, 5 | eqeqan12d 2749 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
| 7 | suc11 6461 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
| 8 | 6, 7 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ 𝑎 = 𝑏)) |
| 9 | 8 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏)) |
| 10 | 9 | rgen2 3184 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏) |
| 11 | dff13 7247 | . 2 ⊢ (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏))) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ 𝑆:On–1-1→On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ↦ cmpt 5201 Oncon0 6352 suc csuc 6354 ⟶wf 6527 –1-1→wf1 6528 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fv 6539 |
| This theorem is referenced by: fin1a2lem6 10419 onsucf1o 43296 |
| Copyright terms: Public domain | W3C validator |