MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem2 Structured version   Visualization version   GIF version

Theorem fin1a2lem2 10399
Description: Lemma for fin1a2 10413. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (π‘₯ ∈ On ↦ suc π‘₯)
Assertion
Ref Expression
fin1a2lem2 𝑆:On–1-1β†’On

Proof of Theorem fin1a2lem2
Dummy variables π‘Ž 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.a . . 3 𝑆 = (π‘₯ ∈ On ↦ suc π‘₯)
2 onsuc 7802 . . 3 (π‘₯ ∈ On β†’ suc π‘₯ ∈ On)
31, 2fmpti 7114 . 2 𝑆:On⟢On
41fin1a2lem1 10398 . . . . . 6 (π‘Ž ∈ On β†’ (π‘†β€˜π‘Ž) = suc π‘Ž)
51fin1a2lem1 10398 . . . . . 6 (𝑏 ∈ On β†’ (π‘†β€˜π‘) = suc 𝑏)
64, 5eqeqan12d 2745 . . . . 5 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) ↔ suc π‘Ž = suc 𝑏))
7 suc11 6472 . . . . 5 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ (suc π‘Ž = suc 𝑏 ↔ π‘Ž = 𝑏))
86, 7bitrd 278 . . . 4 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) ↔ π‘Ž = 𝑏))
98biimpd 228 . . 3 ((π‘Ž ∈ On ∧ 𝑏 ∈ On) β†’ ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ π‘Ž = 𝑏))
109rgen2 3196 . 2 βˆ€π‘Ž ∈ On βˆ€π‘ ∈ On ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ π‘Ž = 𝑏)
11 dff13 7257 . 2 (𝑆:On–1-1β†’On ↔ (𝑆:On⟢On ∧ βˆ€π‘Ž ∈ On βˆ€π‘ ∈ On ((π‘†β€˜π‘Ž) = (π‘†β€˜π‘) β†’ π‘Ž = 𝑏)))
123, 10, 11mpbir2an 708 1 𝑆:On–1-1β†’On
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   ↦ cmpt 5232  Oncon0 6365  suc csuc 6367  βŸΆwf 6540  β€“1-1β†’wf1 6541  β€˜cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fv 6552
This theorem is referenced by:  fin1a2lem6  10403  onsucf1o  42325
  Copyright terms: Public domain W3C validator