![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem2 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10413. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | β’ π = (π₯ β On β¦ suc π₯) |
Ref | Expression |
---|---|
fin1a2lem2 | β’ π:Onβ1-1βOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.a | . . 3 β’ π = (π₯ β On β¦ suc π₯) | |
2 | onsuc 7802 | . . 3 β’ (π₯ β On β suc π₯ β On) | |
3 | 1, 2 | fmpti 7114 | . 2 β’ π:OnβΆOn |
4 | 1 | fin1a2lem1 10398 | . . . . . 6 β’ (π β On β (πβπ) = suc π) |
5 | 1 | fin1a2lem1 10398 | . . . . . 6 β’ (π β On β (πβπ) = suc π) |
6 | 4, 5 | eqeqan12d 2745 | . . . . 5 β’ ((π β On β§ π β On) β ((πβπ) = (πβπ) β suc π = suc π)) |
7 | suc11 6472 | . . . . 5 β’ ((π β On β§ π β On) β (suc π = suc π β π = π)) | |
8 | 6, 7 | bitrd 278 | . . . 4 β’ ((π β On β§ π β On) β ((πβπ) = (πβπ) β π = π)) |
9 | 8 | biimpd 228 | . . 3 β’ ((π β On β§ π β On) β ((πβπ) = (πβπ) β π = π)) |
10 | 9 | rgen2 3196 | . 2 β’ βπ β On βπ β On ((πβπ) = (πβπ) β π = π) |
11 | dff13 7257 | . 2 β’ (π:Onβ1-1βOn β (π:OnβΆOn β§ βπ β On βπ β On ((πβπ) = (πβπ) β π = π))) | |
12 | 3, 10, 11 | mpbir2an 708 | 1 β’ π:Onβ1-1βOn |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 β¦ cmpt 5232 Oncon0 6365 suc csuc 6367 βΆwf 6540 β1-1βwf1 6541 βcfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fv 6552 |
This theorem is referenced by: fin1a2lem6 10403 onsucf1o 42325 |
Copyright terms: Public domain | W3C validator |