Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1a2lem2 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10250. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
fin1a2lem2 | ⊢ 𝑆:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.a | . . 3 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
2 | suceloni 7702 | . . 3 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
3 | 1, 2 | fmpti 7025 | . 2 ⊢ 𝑆:On⟶On |
4 | 1 | fin1a2lem1 10235 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑆‘𝑎) = suc 𝑎) |
5 | 1 | fin1a2lem1 10235 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑆‘𝑏) = suc 𝑏) |
6 | 4, 5 | eqeqan12d 2750 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
7 | suc11 6393 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
8 | 6, 7 | bitrd 278 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ 𝑎 = 𝑏)) |
9 | 8 | biimpd 228 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏)) |
10 | 9 | rgen2 3190 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏) |
11 | dff13 7167 | . 2 ⊢ (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏))) | |
12 | 3, 10, 11 | mpbir2an 708 | 1 ⊢ 𝑆:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ↦ cmpt 5169 Oncon0 6288 suc csuc 6290 ⟶wf 6461 –1-1→wf1 6462 ‘cfv 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fv 6473 |
This theorem is referenced by: fin1a2lem6 10240 |
Copyright terms: Public domain | W3C validator |