| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin1a2lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for fin1a2 10306. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
| Ref | Expression |
|---|---|
| fin1a2lem2 | ⊢ 𝑆:On–1-1→On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin1a2lem.a | . . 3 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
| 2 | onsuc 7743 | . . 3 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
| 3 | 1, 2 | fmpti 7045 | . 2 ⊢ 𝑆:On⟶On |
| 4 | 1 | fin1a2lem1 10291 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑆‘𝑎) = suc 𝑎) |
| 5 | 1 | fin1a2lem1 10291 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑆‘𝑏) = suc 𝑏) |
| 6 | 4, 5 | eqeqan12d 2745 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
| 7 | suc11 6415 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
| 8 | 6, 7 | bitrd 279 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ 𝑎 = 𝑏)) |
| 9 | 8 | biimpd 229 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏)) |
| 10 | 9 | rgen2 3172 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏) |
| 11 | dff13 7188 | . 2 ⊢ (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏))) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ 𝑆:On–1-1→On |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5172 Oncon0 6306 suc csuc 6308 ⟶wf 6477 –1-1→wf1 6478 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fv 6489 |
| This theorem is referenced by: fin1a2lem6 10296 onsucf1o 43311 |
| Copyright terms: Public domain | W3C validator |