MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem2 Structured version   Visualization version   GIF version

Theorem fin1a2lem2 10292
Description: Lemma for fin1a2 10306. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem2 𝑆:On–1-1→On

Proof of Theorem fin1a2lem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.a . . 3 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
2 onsuc 7743 . . 3 (𝑥 ∈ On → suc 𝑥 ∈ On)
31, 2fmpti 7045 . 2 𝑆:On⟶On
41fin1a2lem1 10291 . . . . . 6 (𝑎 ∈ On → (𝑆𝑎) = suc 𝑎)
51fin1a2lem1 10291 . . . . . 6 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
64, 5eqeqan12d 2745 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) ↔ suc 𝑎 = suc 𝑏))
7 suc11 6415 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏𝑎 = 𝑏))
86, 7bitrd 279 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) ↔ 𝑎 = 𝑏))
98biimpd 229 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏))
109rgen2 3172 . 2 𝑎 ∈ On ∀𝑏 ∈ On ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏)
11 dff13 7188 . 2 (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏)))
123, 10, 11mpbir2an 711 1 𝑆:On–1-1→On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cmpt 5172  Oncon0 6306  suc csuc 6308  wf 6477  1-1wf1 6478  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489
This theorem is referenced by:  fin1a2lem6  10296  onsucf1o  43311
  Copyright terms: Public domain W3C validator