MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem2 Structured version   Visualization version   GIF version

Theorem fin1a2lem2 10088
Description: Lemma for fin1a2 10102. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem2 𝑆:On–1-1→On

Proof of Theorem fin1a2lem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.a . . 3 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
2 suceloni 7635 . . 3 (𝑥 ∈ On → suc 𝑥 ∈ On)
31, 2fmpti 6968 . 2 𝑆:On⟶On
41fin1a2lem1 10087 . . . . . 6 (𝑎 ∈ On → (𝑆𝑎) = suc 𝑎)
51fin1a2lem1 10087 . . . . . 6 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
64, 5eqeqan12d 2752 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) ↔ suc 𝑎 = suc 𝑏))
7 suc11 6354 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏𝑎 = 𝑏))
86, 7bitrd 278 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) ↔ 𝑎 = 𝑏))
98biimpd 228 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏))
109rgen2 3126 . 2 𝑎 ∈ On ∀𝑏 ∈ On ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏)
11 dff13 7109 . 2 (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏)))
123, 10, 11mpbir2an 707 1 𝑆:On–1-1→On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  Oncon0 6251  suc csuc 6253  wf 6414  1-1wf1 6415  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426
This theorem is referenced by:  fin1a2lem6  10092
  Copyright terms: Public domain W3C validator