MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem2 Structured version   Visualization version   GIF version

Theorem fin1a2lem2 10441
Description: Lemma for fin1a2 10455. The successor operation on the ordinal numbers is injective or one-to-one. Lemma 1.17 of [Schloeder] p. 2. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.a 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
Assertion
Ref Expression
fin1a2lem2 𝑆:On–1-1→On

Proof of Theorem fin1a2lem2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1a2lem.a . . 3 𝑆 = (𝑥 ∈ On ↦ suc 𝑥)
2 onsuc 7831 . . 3 (𝑥 ∈ On → suc 𝑥 ∈ On)
31, 2fmpti 7132 . 2 𝑆:On⟶On
41fin1a2lem1 10440 . . . . . 6 (𝑎 ∈ On → (𝑆𝑎) = suc 𝑎)
51fin1a2lem1 10440 . . . . . 6 (𝑏 ∈ On → (𝑆𝑏) = suc 𝑏)
64, 5eqeqan12d 2751 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) ↔ suc 𝑎 = suc 𝑏))
7 suc11 6491 . . . . 5 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏𝑎 = 𝑏))
86, 7bitrd 279 . . . 4 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) ↔ 𝑎 = 𝑏))
98biimpd 229 . . 3 ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏))
109rgen2 3199 . 2 𝑎 ∈ On ∀𝑏 ∈ On ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏)
11 dff13 7275 . 2 (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆𝑎) = (𝑆𝑏) → 𝑎 = 𝑏)))
123, 10, 11mpbir2an 711 1 𝑆:On–1-1→On
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  cmpt 5225  Oncon0 6384  suc csuc 6386  wf 6557  1-1wf1 6558  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fv 6569
This theorem is referenced by:  fin1a2lem6  10445  onsucf1o  43285
  Copyright terms: Public domain W3C validator