![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem2 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 9523. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.a | ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) |
Ref | Expression |
---|---|
fin1a2lem2 | ⊢ 𝑆:On–1-1→On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.a | . . 3 ⊢ 𝑆 = (𝑥 ∈ On ↦ suc 𝑥) | |
2 | suceloni 7245 | . . 3 ⊢ (𝑥 ∈ On → suc 𝑥 ∈ On) | |
3 | 1, 2 | fmpti 6606 | . 2 ⊢ 𝑆:On⟶On |
4 | 1 | fin1a2lem1 9508 | . . . . . 6 ⊢ (𝑎 ∈ On → (𝑆‘𝑎) = suc 𝑎) |
5 | 1 | fin1a2lem1 9508 | . . . . . 6 ⊢ (𝑏 ∈ On → (𝑆‘𝑏) = suc 𝑏) |
6 | 4, 5 | eqeqan12d 2813 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ suc 𝑎 = suc 𝑏)) |
7 | suc11 6042 | . . . . 5 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (suc 𝑎 = suc 𝑏 ↔ 𝑎 = 𝑏)) | |
8 | 6, 7 | bitrd 271 | . . . 4 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) ↔ 𝑎 = 𝑏)) |
9 | 8 | biimpd 221 | . . 3 ⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏)) |
10 | 9 | rgen2a 3156 | . 2 ⊢ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏) |
11 | dff13 6738 | . 2 ⊢ (𝑆:On–1-1→On ↔ (𝑆:On⟶On ∧ ∀𝑎 ∈ On ∀𝑏 ∈ On ((𝑆‘𝑎) = (𝑆‘𝑏) → 𝑎 = 𝑏))) | |
12 | 3, 10, 11 | mpbir2an 703 | 1 ⊢ 𝑆:On–1-1→On |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ↦ cmpt 4920 Oncon0 5939 suc csuc 5941 ⟶wf 6095 –1-1→wf1 6096 ‘cfv 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-ord 5942 df-on 5943 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fv 6107 |
This theorem is referenced by: fin1a2lem6 9513 |
Copyright terms: Public domain | W3C validator |