| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0suc | Structured version Visualization version GIF version | ||
| Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| nn0suc | ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | nnsuc 7824 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) | |
| 3 | 1, 2 | sylan2br 595 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ¬ 𝐴 = ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
| 4 | 3 | ex 412 | . 2 ⊢ (𝐴 ∈ ω → (¬ 𝐴 = ∅ → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 5 | 4 | orrd 863 | 1 ⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∅c0 4286 suc csuc 6313 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7807 |
| This theorem is referenced by: nnawordex 8562 nnaordex2 8564 nneneq 9130 php 9131 cantnfvalf 9580 cantnflt 9587 ttrclselem1 9640 ttrclselem2 9641 hsmexlem9 10338 winainflem 10606 bnj517 34851 nnuni 35699 |
| Copyright terms: Public domain | W3C validator |