| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| finds.5 | ⊢ 𝜓 |
| finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds | ⊢ (𝐴 ∈ ω → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
| 2 | 0ex 5246 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | elab 3635 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 5 | 1, 4 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
| 6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 9 | 7, 8 | elab 3635 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
| 10 | 7 | sucex 7742 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 12 | 10, 11 | elab 3635 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
| 13 | 6, 9, 12 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 15 | peano5 7826 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
| 16 | 5, 14, 15 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
| 17 | 16 | sseli 3931 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 19 | 18 | elabg 3632 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
| 20 | 17, 19 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3903 ∅c0 4284 suc csuc 6309 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 |
| This theorem is referenced by: findsg 7830 findes 7833 seqomlem1 8372 nna0r 8527 nnm0r 8528 nnawordi 8539 nneob 8574 naddoa 8620 enrefnn 8972 pssnn 9082 nneneq 9120 inf3lem1 9524 inf3lem2 9525 cantnfval2 9565 cantnfp1lem3 9576 ttrclss 9616 ttrclselem2 9622 r1fin 9669 ackbij1lem14 10126 ackbij1lem16 10128 ackbij1 10131 ackbij2lem2 10133 ackbij2lem3 10134 infpssrlem4 10200 fin23lem14 10227 fin23lem34 10240 itunitc1 10314 ituniiun 10316 om2uzuzi 13856 om2uzlti 13857 om2uzrdg 13863 uzrdgxfr 13874 hashgadd 14284 mreexexd 17554 precsexlem8 28121 precsexlem9 28122 om2noseqrdg 28203 bdayn0sf1o 28264 dfnns2 28266 constrfin 33713 constrextdg2 33716 satfrel 35340 satfdm 35342 satfrnmapom 35343 satf0op 35350 satf0n0 35351 sat1el2xp 35352 fmlafvel 35358 fmlaomn0 35363 gonar 35368 goalr 35370 satffun 35382 findfvcl 36426 finxp00 37376 onmcl 43304 naddonnn 43368 |
| Copyright terms: Public domain | W3C validator |