![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
finds.5 | ⊢ 𝜓 |
finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
finds | ⊢ (𝐴 ∈ ω → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
2 | 0ex 5325 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | elab 3694 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | 1, 4 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
7 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
9 | 7, 8 | elab 3694 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
10 | 7 | sucex 7842 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
12 | 10, 11 | elab 3694 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
13 | 6, 9, 12 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | rgen 3069 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
15 | peano5 7932 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
16 | 5, 14, 15 | mp2an 691 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
17 | 16 | sseli 4004 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
19 | 18 | elabg 3690 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
20 | 17, 19 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 suc csuc 6397 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-om 7904 |
This theorem is referenced by: findsg 7937 findes 7940 seqomlem1 8506 nna0r 8665 nnm0r 8666 nnawordi 8677 nneob 8712 naddoa 8758 enrefnn 9113 pssnn 9234 nneneq 9272 nneneqOLD 9284 inf3lem1 9697 inf3lem2 9698 cantnfval2 9738 cantnfp1lem3 9749 ttrclss 9789 ttrclselem2 9795 r1fin 9842 ackbij1lem14 10301 ackbij1lem16 10303 ackbij1 10306 ackbij2lem2 10308 ackbij2lem3 10309 infpssrlem4 10375 fin23lem14 10402 fin23lem34 10415 itunitc1 10489 ituniiun 10491 om2uzuzi 14000 om2uzlti 14001 om2uzrdg 14007 uzrdgxfr 14018 hashgadd 14426 mreexexd 17706 precsexlem8 28256 precsexlem9 28257 om2noseqrdg 28328 dfnns2 28380 constrfin 33736 satfrel 35335 satfdm 35337 satfrnmapom 35338 satf0op 35345 satf0n0 35346 sat1el2xp 35347 fmlafvel 35353 fmlaomn0 35358 gonar 35363 goalr 35365 satffun 35377 findfvcl 36418 finxp00 37368 onmcl 43293 naddonnn 43357 |
Copyright terms: Public domain | W3C validator |