| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| finds.5 | ⊢ 𝜓 |
| finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds | ⊢ (𝐴 ∈ ω → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
| 2 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | elab 3630 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 5 | 1, 4 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
| 6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 9 | 7, 8 | elab 3630 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
| 10 | 7 | sucex 7734 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 12 | 10, 11 | elab 3630 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
| 13 | 6, 9, 12 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | rgen 3049 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 15 | peano5 7818 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
| 16 | 5, 14, 15 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
| 17 | 16 | sseli 3925 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 19 | 18 | elabg 3627 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
| 20 | 17, 19 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ⊆ wss 3897 ∅c0 4278 suc csuc 6303 ωcom 7791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-om 7792 |
| This theorem is referenced by: findsg 7822 findes 7825 seqomlem1 8364 nna0r 8519 nnm0r 8520 nnawordi 8531 nneob 8566 naddoa 8612 enrefnn 8963 pssnn 9073 nneneq 9110 inf3lem1 9513 inf3lem2 9514 cantnfval2 9554 cantnfp1lem3 9565 ttrclss 9605 ttrclselem2 9611 r1fin 9661 ackbij1lem14 10118 ackbij1lem16 10120 ackbij1 10123 ackbij2lem2 10125 ackbij2lem3 10126 infpssrlem4 10192 fin23lem14 10219 fin23lem34 10232 itunitc1 10306 ituniiun 10308 om2uzuzi 13851 om2uzlti 13852 om2uzrdg 13858 uzrdgxfr 13869 hashgadd 14279 mreexexd 17549 precsexlem8 28147 precsexlem9 28148 om2noseqrdg 28229 bdayn0sf1o 28290 dfnns2 28292 constrfin 33751 constrextdg2 33754 satfrel 35403 satfdm 35405 satfrnmapom 35406 satf0op 35413 satf0n0 35414 sat1el2xp 35415 fmlafvel 35421 fmlaomn0 35426 gonar 35431 goalr 35433 satffun 35445 findfvcl 36486 finxp00 37436 onmcl 43364 naddonnn 43428 |
| Copyright terms: Public domain | W3C validator |