| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| finds.5 | ⊢ 𝜓 |
| finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds | ⊢ (𝐴 ∈ ω → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
| 2 | 0ex 5277 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | elab 3658 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 5 | 1, 4 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
| 6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 7 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 9 | 7, 8 | elab 3658 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
| 10 | 7 | sucex 7800 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 12 | 10, 11 | elab 3658 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
| 13 | 6, 9, 12 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | rgen 3053 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 15 | peano5 7889 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
| 16 | 5, 14, 15 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
| 17 | 16 | sseli 3954 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 19 | 18 | elabg 3655 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
| 20 | 17, 19 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 ⊆ wss 3926 ∅c0 4308 suc csuc 6354 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7862 |
| This theorem is referenced by: findsg 7893 findes 7896 seqomlem1 8464 nna0r 8621 nnm0r 8622 nnawordi 8633 nneob 8668 naddoa 8714 enrefnn 9061 pssnn 9182 nneneq 9220 inf3lem1 9642 inf3lem2 9643 cantnfval2 9683 cantnfp1lem3 9694 ttrclss 9734 ttrclselem2 9740 r1fin 9787 ackbij1lem14 10246 ackbij1lem16 10248 ackbij1 10251 ackbij2lem2 10253 ackbij2lem3 10254 infpssrlem4 10320 fin23lem14 10347 fin23lem34 10360 itunitc1 10434 ituniiun 10436 om2uzuzi 13967 om2uzlti 13968 om2uzrdg 13974 uzrdgxfr 13985 hashgadd 14395 mreexexd 17660 precsexlem8 28168 precsexlem9 28169 om2noseqrdg 28250 bdayn0sf1o 28311 dfnns2 28313 constrfin 33780 constrextdg2 33783 satfrel 35389 satfdm 35391 satfrnmapom 35392 satf0op 35399 satf0n0 35400 sat1el2xp 35401 fmlafvel 35407 fmlaomn0 35412 gonar 35417 goalr 35419 satffun 35431 findfvcl 36470 finxp00 37420 onmcl 43355 naddonnn 43419 |
| Copyright terms: Public domain | W3C validator |