Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
finds.5 | ⊢ 𝜓 |
finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
finds | ⊢ (𝐴 ∈ ω → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
2 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | elab 3602 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
5 | 1, 4 | mpbir 230 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
7 | vex 3426 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
9 | 7, 8 | elab 3602 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
10 | 7 | sucex 7633 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
12 | 10, 11 | elab 3602 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
13 | 6, 9, 12 | 3imtr4g 295 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
14 | 13 | rgen 3073 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
15 | peano5 7714 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
16 | 5, 14, 15 | mp2an 688 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
17 | 16 | sseli 3913 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
19 | 18 | elabg 3600 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
20 | 17, 19 | mpbid 231 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: findsg 7720 findes 7723 seqomlem1 8251 nna0r 8402 nnm0r 8403 nnawordi 8414 nneob 8446 enrefnn 8791 nneneq 8896 pssnn 8913 pssnnOLD 8969 inf3lem1 9316 inf3lem2 9317 cantnfval2 9357 cantnfp1lem3 9368 trpredmintr 9409 r1fin 9462 ackbij1lem14 9920 ackbij1lem16 9922 ackbij1 9925 ackbij2lem2 9927 ackbij2lem3 9928 infpssrlem4 9993 fin23lem14 10020 fin23lem34 10033 itunitc1 10107 ituniiun 10109 om2uzuzi 13597 om2uzlti 13598 om2uzrdg 13604 uzrdgxfr 13615 hashgadd 14020 mreexexd 17274 satfrel 33229 satfdm 33231 satfrnmapom 33232 satf0op 33239 satf0n0 33240 sat1el2xp 33241 fmlafvel 33247 fmlaomn0 33252 gonar 33257 goalr 33259 satffun 33271 ttrclss 33706 ttrclselem2 33712 findfvcl 34568 finxp00 35500 |
Copyright terms: Public domain | W3C validator |