MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds Structured version   Visualization version   GIF version

Theorem finds 7875
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1 (𝑥 = ∅ → (𝜑𝜓))
finds.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds.4 (𝑥 = 𝐴 → (𝜑𝜏))
finds.5 𝜓
finds.6 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds (𝐴 ∈ ω → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5 𝜓
2 0ex 5265 . . . . . 6 ∅ ∈ V
3 finds.1 . . . . . 6 (𝑥 = ∅ → (𝜑𝜓))
42, 3elab 3649 . . . . 5 (∅ ∈ {𝑥𝜑} ↔ 𝜓)
51, 4mpbir 231 . . . 4 ∅ ∈ {𝑥𝜑}
6 finds.6 . . . . . 6 (𝑦 ∈ ω → (𝜒𝜃))
7 vex 3454 . . . . . . 7 𝑦 ∈ V
8 finds.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
97, 8elab 3649 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ 𝜒)
107sucex 7785 . . . . . . 7 suc 𝑦 ∈ V
11 finds.3 . . . . . . 7 (𝑥 = suc 𝑦 → (𝜑𝜃))
1210, 11elab 3649 . . . . . 6 (suc 𝑦 ∈ {𝑥𝜑} ↔ 𝜃)
136, 9, 123imtr4g 296 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
1413rgen 3047 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})
15 peano5 7872 . . . 4 ((∅ ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})) → ω ⊆ {𝑥𝜑})
165, 14, 15mp2an 692 . . 3 ω ⊆ {𝑥𝜑}
1716sseli 3945 . 2 (𝐴 ∈ ω → 𝐴 ∈ {𝑥𝜑})
18 finds.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
1918elabg 3646 . 2 (𝐴 ∈ ω → (𝐴 ∈ {𝑥𝜑} ↔ 𝜏))
2017, 19mpbid 232 1 (𝐴 ∈ ω → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wss 3917  c0 4299  suc csuc 6337  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-om 7846
This theorem is referenced by:  findsg  7876  findes  7879  seqomlem1  8421  nna0r  8576  nnm0r  8577  nnawordi  8588  nneob  8623  naddoa  8669  enrefnn  9021  pssnn  9138  nneneq  9176  inf3lem1  9588  inf3lem2  9589  cantnfval2  9629  cantnfp1lem3  9640  ttrclss  9680  ttrclselem2  9686  r1fin  9733  ackbij1lem14  10192  ackbij1lem16  10194  ackbij1  10197  ackbij2lem2  10199  ackbij2lem3  10200  infpssrlem4  10266  fin23lem14  10293  fin23lem34  10306  itunitc1  10380  ituniiun  10382  om2uzuzi  13921  om2uzlti  13922  om2uzrdg  13928  uzrdgxfr  13939  hashgadd  14349  mreexexd  17616  precsexlem8  28123  precsexlem9  28124  om2noseqrdg  28205  bdayn0sf1o  28266  dfnns2  28268  constrfin  33743  constrextdg2  33746  satfrel  35361  satfdm  35363  satfrnmapom  35364  satf0op  35371  satf0n0  35372  sat1el2xp  35373  fmlafvel  35379  fmlaomn0  35384  gonar  35389  goalr  35391  satffun  35403  findfvcl  36447  finxp00  37397  onmcl  43327  naddonnn  43391
  Copyright terms: Public domain W3C validator