| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.) |
| Ref | Expression |
|---|---|
| finds.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| finds.5 | ⊢ 𝜓 |
| finds.6 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds | ⊢ (𝐴 ∈ ω → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds.5 | . . . . 5 ⊢ 𝜓 | |
| 2 | 0ex 5307 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds.1 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | elab 3679 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 5 | 1, 4 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ 𝜑} |
| 6 | finds.6 | . . . . . 6 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 7 | vex 3484 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 8 | finds.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 9 | 7, 8 | elab 3679 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜒) |
| 10 | 7 | sucex 7826 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 11 | finds.3 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 12 | 10, 11 | elab 3679 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜃) |
| 13 | 6, 9, 12 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) |
| 14 | 13 | rgen 3063 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 15 | peano5 7915 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ 𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ 𝜑} → suc 𝑦 ∈ {𝑥 ∣ 𝜑})) → ω ⊆ {𝑥 ∣ 𝜑}) | |
| 16 | 5, 14, 15 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ 𝜑} |
| 17 | 16 | sseli 3979 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 18 | finds.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 19 | 18 | elabg 3676 | . 2 ⊢ (𝐴 ∈ ω → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜏)) |
| 20 | 17, 19 | mpbid 232 | 1 ⊢ (𝐴 ∈ ω → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ⊆ wss 3951 ∅c0 4333 suc csuc 6386 ωcom 7887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-om 7888 |
| This theorem is referenced by: findsg 7919 findes 7922 seqomlem1 8490 nna0r 8647 nnm0r 8648 nnawordi 8659 nneob 8694 naddoa 8740 enrefnn 9087 pssnn 9208 nneneq 9246 nneneqOLD 9258 inf3lem1 9668 inf3lem2 9669 cantnfval2 9709 cantnfp1lem3 9720 ttrclss 9760 ttrclselem2 9766 r1fin 9813 ackbij1lem14 10272 ackbij1lem16 10274 ackbij1 10277 ackbij2lem2 10279 ackbij2lem3 10280 infpssrlem4 10346 fin23lem14 10373 fin23lem34 10386 itunitc1 10460 ituniiun 10462 om2uzuzi 13990 om2uzlti 13991 om2uzrdg 13997 uzrdgxfr 14008 hashgadd 14416 mreexexd 17691 precsexlem8 28238 precsexlem9 28239 om2noseqrdg 28310 dfnns2 28362 constrfin 33787 constrextdg2 33790 satfrel 35372 satfdm 35374 satfrnmapom 35375 satf0op 35382 satf0n0 35383 sat1el2xp 35384 fmlafvel 35390 fmlaomn0 35395 gonar 35400 goalr 35402 satffun 35414 findfvcl 36453 finxp00 37403 onmcl 43344 naddonnn 43408 |
| Copyright terms: Public domain | W3C validator |