MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds Structured version   Visualization version   GIF version

Theorem finds 7892
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. This is Metamath 100 proof #74. (Contributed by NM, 14-Apr-1995.)
Hypotheses
Ref Expression
finds.1 (𝑥 = ∅ → (𝜑𝜓))
finds.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds.4 (𝑥 = 𝐴 → (𝜑𝜏))
finds.5 𝜓
finds.6 (𝑦 ∈ ω → (𝜒𝜃))
Assertion
Ref Expression
finds (𝐴 ∈ ω → 𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem finds
StepHypRef Expression
1 finds.5 . . . . 5 𝜓
2 0ex 5277 . . . . . 6 ∅ ∈ V
3 finds.1 . . . . . 6 (𝑥 = ∅ → (𝜑𝜓))
42, 3elab 3658 . . . . 5 (∅ ∈ {𝑥𝜑} ↔ 𝜓)
51, 4mpbir 231 . . . 4 ∅ ∈ {𝑥𝜑}
6 finds.6 . . . . . 6 (𝑦 ∈ ω → (𝜒𝜃))
7 vex 3463 . . . . . . 7 𝑦 ∈ V
8 finds.2 . . . . . . 7 (𝑥 = 𝑦 → (𝜑𝜒))
97, 8elab 3658 . . . . . 6 (𝑦 ∈ {𝑥𝜑} ↔ 𝜒)
107sucex 7800 . . . . . . 7 suc 𝑦 ∈ V
11 finds.3 . . . . . . 7 (𝑥 = suc 𝑦 → (𝜑𝜃))
1210, 11elab 3658 . . . . . 6 (suc 𝑦 ∈ {𝑥𝜑} ↔ 𝜃)
136, 9, 123imtr4g 296 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑}))
1413rgen 3053 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})
15 peano5 7889 . . . 4 ((∅ ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥𝜑} → suc 𝑦 ∈ {𝑥𝜑})) → ω ⊆ {𝑥𝜑})
165, 14, 15mp2an 692 . . 3 ω ⊆ {𝑥𝜑}
1716sseli 3954 . 2 (𝐴 ∈ ω → 𝐴 ∈ {𝑥𝜑})
18 finds.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
1918elabg 3655 . 2 (𝐴 ∈ ω → (𝐴 ∈ {𝑥𝜑} ↔ 𝜏))
2017, 19mpbid 232 1 (𝐴 ∈ ω → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  {cab 2713  wral 3051  wss 3926  c0 4308  suc csuc 6354  ωcom 7861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-om 7862
This theorem is referenced by:  findsg  7893  findes  7896  seqomlem1  8464  nna0r  8621  nnm0r  8622  nnawordi  8633  nneob  8668  naddoa  8714  enrefnn  9061  pssnn  9182  nneneq  9220  inf3lem1  9642  inf3lem2  9643  cantnfval2  9683  cantnfp1lem3  9694  ttrclss  9734  ttrclselem2  9740  r1fin  9787  ackbij1lem14  10246  ackbij1lem16  10248  ackbij1  10251  ackbij2lem2  10253  ackbij2lem3  10254  infpssrlem4  10320  fin23lem14  10347  fin23lem34  10360  itunitc1  10434  ituniiun  10436  om2uzuzi  13967  om2uzlti  13968  om2uzrdg  13974  uzrdgxfr  13985  hashgadd  14395  mreexexd  17660  precsexlem8  28168  precsexlem9  28169  om2noseqrdg  28250  bdayn0sf1o  28311  dfnns2  28313  constrfin  33780  constrextdg2  33783  satfrel  35389  satfdm  35391  satfrnmapom  35392  satf0op  35399  satf0n0  35400  sat1el2xp  35401  fmlafvel  35407  fmlaomn0  35412  gonar  35417  goalr  35419  satffun  35431  findfvcl  36470  finxp00  37420  onmcl  43355  naddonnn  43419
  Copyright terms: Public domain W3C validator