|   | Mathbox for Jeff Hoffman | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findreccl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.) | 
| Ref | Expression | 
|---|---|
| findreccl.1 | ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | 
| Ref | Expression | 
|---|---|
| findreccl | ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rdg0g 8468 | . . 3 ⊢ (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘∅) = 𝐴) | |
| 2 | eleq1a 2835 | . . 3 ⊢ (𝐴 ∈ 𝑃 → ((rec(𝐺, 𝐴)‘∅) = 𝐴 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃) | 
| 4 | nnon 7894 | . . . 4 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
| 5 | fveq2 6905 | . . . . . . 7 ⊢ (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → (𝐺‘𝑧) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦))) | |
| 6 | 5 | eleq1d 2825 | . . . . . 6 ⊢ (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → ((𝐺‘𝑧) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)) | 
| 7 | findreccl.1 | . . . . . 6 ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | |
| 8 | 6, 7 | vtoclga 3576 | . . . . 5 ⊢ ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃) | 
| 9 | rdgsuc 8465 | . . . . . 6 ⊢ (𝑦 ∈ On → (rec(𝐺, 𝐴)‘suc 𝑦) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦))) | |
| 10 | 9 | eleq1d 2825 | . . . . 5 ⊢ (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)) | 
| 11 | 8, 10 | imbitrrid 246 | . . . 4 ⊢ (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)) | 
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑦 ∈ ω → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)) | 
| 13 | 12 | a1d 25 | . 2 ⊢ (𝑦 ∈ ω → (𝐴 ∈ 𝑃 → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))) | 
| 14 | 3, 13 | findfvcl 36454 | 1 ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∅c0 4332 Oncon0 6383 suc csuc 6385 ‘cfv 6560 ωcom 7888 reccrdg 8450 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 | 
| This theorem is referenced by: findabrcl 36456 | 
| Copyright terms: Public domain | W3C validator |