Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  findreccl Structured version   Visualization version   GIF version

Theorem findreccl 34733
Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.)
Hypothesis
Ref Expression
findreccl.1 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
Assertion
Ref Expression
findreccl (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
Distinct variable groups:   𝑧,𝐺   𝑧,𝐴   𝑧,𝑃
Allowed substitution hint:   𝐶(𝑧)

Proof of Theorem findreccl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rdg0g 8320 . . 3 (𝐴𝑃 → (rec(𝐺, 𝐴)‘∅) = 𝐴)
2 eleq1a 2832 . . 3 (𝐴𝑃 → ((rec(𝐺, 𝐴)‘∅) = 𝐴 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃))
31, 2mpd 15 . 2 (𝐴𝑃 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃)
4 nnon 7778 . . . 4 (𝑦 ∈ ω → 𝑦 ∈ On)
5 fveq2 6819 . . . . . . 7 (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → (𝐺𝑧) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦)))
65eleq1d 2821 . . . . . 6 (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → ((𝐺𝑧) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃))
7 findreccl.1 . . . . . 6 (𝑧𝑃 → (𝐺𝑧) ∈ 𝑃)
86, 7vtoclga 3522 . . . . 5 ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)
9 rdgsuc 8317 . . . . . 6 (𝑦 ∈ On → (rec(𝐺, 𝐴)‘suc 𝑦) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦)))
109eleq1d 2821 . . . . 5 (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃))
118, 10syl5ibr 245 . . . 4 (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))
124, 11syl 17 . . 3 (𝑦 ∈ ω → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))
1312a1d 25 . 2 (𝑦 ∈ ω → (𝐴𝑃 → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)))
143, 13findfvcl 34732 1 (𝐶 ∈ ω → (𝐴𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  c0 4268  Oncon0 6296  suc csuc 6298  cfv 6473  ωcom 7772  reccrdg 8302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-om 7773  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303
This theorem is referenced by:  findabrcl  34734
  Copyright terms: Public domain W3C validator