| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findreccl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| findreccl.1 | ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) |
| Ref | Expression |
|---|---|
| findreccl | ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdg0g 8446 | . . 3 ⊢ (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘∅) = 𝐴) | |
| 2 | eleq1a 2830 | . . 3 ⊢ (𝐴 ∈ 𝑃 → ((rec(𝐺, 𝐴)‘∅) = 𝐴 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃) |
| 4 | nnon 7872 | . . . 4 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
| 5 | fveq2 6881 | . . . . . . 7 ⊢ (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → (𝐺‘𝑧) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦))) | |
| 6 | 5 | eleq1d 2820 | . . . . . 6 ⊢ (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → ((𝐺‘𝑧) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)) |
| 7 | findreccl.1 | . . . . . 6 ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | |
| 8 | 6, 7 | vtoclga 3561 | . . . . 5 ⊢ ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃) |
| 9 | rdgsuc 8443 | . . . . . 6 ⊢ (𝑦 ∈ On → (rec(𝐺, 𝐴)‘suc 𝑦) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦))) | |
| 10 | 9 | eleq1d 2820 | . . . . 5 ⊢ (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)) |
| 11 | 8, 10 | imbitrrid 246 | . . . 4 ⊢ (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)) |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑦 ∈ ω → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)) |
| 13 | 12 | a1d 25 | . 2 ⊢ (𝑦 ∈ ω → (𝐴 ∈ 𝑃 → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))) |
| 14 | 3, 13 | findfvcl 36475 | 1 ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4313 Oncon0 6357 suc csuc 6359 ‘cfv 6536 ωcom 7866 reccrdg 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 |
| This theorem is referenced by: findabrcl 36477 |
| Copyright terms: Public domain | W3C validator |