| Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > findreccl | Structured version Visualization version GIF version | ||
| Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| findreccl.1 | ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) |
| Ref | Expression |
|---|---|
| findreccl | ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdg0g 8395 | . . 3 ⊢ (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘∅) = 𝐴) | |
| 2 | eleq1a 2823 | . . 3 ⊢ (𝐴 ∈ 𝑃 → ((rec(𝐺, 𝐴)‘∅) = 𝐴 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃)) | |
| 3 | 1, 2 | mpd 15 | . 2 ⊢ (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘∅) ∈ 𝑃) |
| 4 | nnon 7848 | . . . 4 ⊢ (𝑦 ∈ ω → 𝑦 ∈ On) | |
| 5 | fveq2 6858 | . . . . . . 7 ⊢ (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → (𝐺‘𝑧) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦))) | |
| 6 | 5 | eleq1d 2813 | . . . . . 6 ⊢ (𝑧 = (rec(𝐺, 𝐴)‘𝑦) → ((𝐺‘𝑧) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)) |
| 7 | findreccl.1 | . . . . . 6 ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | |
| 8 | 6, 7 | vtoclga 3543 | . . . . 5 ⊢ ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃) |
| 9 | rdgsuc 8392 | . . . . . 6 ⊢ (𝑦 ∈ On → (rec(𝐺, 𝐴)‘suc 𝑦) = (𝐺‘(rec(𝐺, 𝐴)‘𝑦))) | |
| 10 | 9 | eleq1d 2813 | . . . . 5 ⊢ (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃 ↔ (𝐺‘(rec(𝐺, 𝐴)‘𝑦)) ∈ 𝑃)) |
| 11 | 8, 10 | imbitrrid 246 | . . . 4 ⊢ (𝑦 ∈ On → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)) |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ (𝑦 ∈ ω → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃)) |
| 13 | 12 | a1d 25 | . 2 ⊢ (𝑦 ∈ ω → (𝐴 ∈ 𝑃 → ((rec(𝐺, 𝐴)‘𝑦) ∈ 𝑃 → (rec(𝐺, 𝐴)‘suc 𝑦) ∈ 𝑃))) |
| 14 | 3, 13 | findfvcl 36440 | 1 ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∅c0 4296 Oncon0 6332 suc csuc 6334 ‘cfv 6511 ωcom 7842 reccrdg 8377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 |
| This theorem is referenced by: findabrcl 36442 |
| Copyright terms: Public domain | W3C validator |