MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegldg Structured version   Visualization version   GIF version

Theorem mdegldg 25996
Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdegldg.y 𝑌 = (0g𝑃)
Assertion
Ref Expression
mdegldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐵   𝑥,𝐹   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   𝑌(𝑥,,𝑚)   0 (𝑚)

Proof of Theorem mdegldg
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 25993 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
873ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
95, 6tdeglem1 25988 . . . . . . 7 𝐻:𝐴⟶ℕ0
109a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻:𝐴⟶ℕ0)
1110ffund 6655 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → Fun 𝐻)
12 simp2 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝐵)
132, 3, 4, 12mplelsfi 21930 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 finSupp 0 )
1413fsuppimpd 9253 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ∈ Fin)
15 imafi 9199 . . . . 5 ((Fun 𝐻 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
1611, 14, 15syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
17 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝑌)
18 mdegldg.y . . . . . . . 8 𝑌 = (0g𝑃)
192, 3mplrcl 21929 . . . . . . . . 9 (𝐹𝐵𝐼 ∈ V)
20193ad2ant2 1134 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐼 ∈ V)
21 ringgrp 20154 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
22213ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Grp)
232, 5, 4, 18, 20, 22mpl0 21941 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑌 = (𝐴 × { 0 }))
2417, 23neeqtrd 2997 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 ≠ (𝐴 × { 0 }))
25 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
262, 25, 3, 5, 12mplelf 21933 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹:𝐴⟶(Base‘𝑅))
2726ffnd 6652 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 Fn 𝐴)
284fvexi 6836 . . . . . . . 8 0 ∈ V
29 ovex 7379 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
305, 29rabex2 5279 . . . . . . . . 9 𝐴 ∈ V
31 fnsuppeq0 8122 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3230, 31mp3an2 1451 . . . . . . . 8 ((𝐹 Fn 𝐴0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3327, 28, 32sylancl 586 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3433necon3bid 2972 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) ≠ ∅ ↔ 𝐹 ≠ (𝐴 × { 0 })))
3524, 34mpbird 257 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ≠ ∅)
3610ffnd 6652 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻 Fn 𝐴)
37 suppssdm 8107 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3837, 26fssdm 6670 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ⊆ 𝐴)
39 fnimaeq0 6614 . . . . . . 7 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4036, 38, 39syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4140necon3bid 2972 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) ≠ ∅ ↔ (𝐹 supp 0 ) ≠ ∅))
4235, 41mpbird 257 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ≠ ∅)
43 imassrn 6020 . . . . . 6 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
4410frnd 6659 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ran 𝐻 ⊆ ℕ0)
4543, 44sstrid 3946 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℕ0)
46 nn0ssre 12382 . . . . . 6 0 ⊆ ℝ
47 ressxr 11153 . . . . . 6 ℝ ⊆ ℝ*
4846, 47sstri 3944 . . . . 5 0 ⊆ ℝ*
4945, 48sstrdi 3947 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
50 xrltso 13037 . . . . 5 < Or ℝ*
51 fisupcl 9354 . . . . 5 (( < Or ℝ* ∧ ((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5250, 51mpan 690 . . . 4 (((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5316, 42, 49, 52syl3anc 1373 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
548, 53eqeltrd 2831 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )))
5536, 38fvelimabd 6895 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹)))
56 rexsupp 8112 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5730, 28, 56mp3an23 1455 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5827, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5955, 58bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6054, 59mpbid 232 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  wss 3902  c0 4283  {csn 4576  cmpt 5172   Or wor 5523   × cxp 5614  ccnv 5615  ran crn 5617  cima 5619  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  m cmap 8750  Fincfn 8869  supcsup 9324  cr 11002  *cxr 11142   < clt 11143  cn 12122  0cn0 12378  Basecbs 17117  0gc0g 17340   Σg cgsu 17341  Grpcgrp 18843  Ringcrg 20149  fldccnfld 21289   mPoly cmpl 21841   mDeg cmdg 25983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-fzo 13552  df-seq 13906  df-hash 14235  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-0g 17342  df-gsum 17343  df-prds 17348  df-pws 17350  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-grp 18846  df-minusg 18847  df-subg 19033  df-cntz 19227  df-cmn 19692  df-abl 19693  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-cnfld 21290  df-psr 21844  df-mpl 21846  df-mdeg 25985
This theorem is referenced by:  mdegnn0cl  26001  deg1ldg  26022
  Copyright terms: Public domain W3C validator