MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegldg Structured version   Visualization version   GIF version

Theorem mdegldg 24676
Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdegldg.y 𝑌 = (0g𝑃)
Assertion
Ref Expression
mdegldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   𝑌(𝑥,,𝑚)   0 (𝑚)

Proof of Theorem mdegldg
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 24673 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
873ad2ant2 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
92, 3mplrcl 20738 . . . . . . . 8 (𝐹𝐵𝐼 ∈ V)
1093ad2ant2 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐼 ∈ V)
115, 6tdeglem1 24668 . . . . . . 7 (𝐼 ∈ V → 𝐻:𝐴⟶ℕ0)
1210, 11syl 17 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻:𝐴⟶ℕ0)
1312ffund 6509 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → Fun 𝐻)
14 simp2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝐵)
15 simp1 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Ring)
162, 3, 4, 14, 15mplelsfi 20739 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 finSupp 0 )
1716fsuppimpd 8839 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ∈ Fin)
18 imafi 8816 . . . . 5 ((Fun 𝐻 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
1913, 17, 18syl2anc 587 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
20 simp3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝑌)
21 mdegldg.y . . . . . . . 8 𝑌 = (0g𝑃)
22 ringgrp 19304 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
23223ad2ant1 1130 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Grp)
242, 5, 4, 21, 10, 23mpl0 20688 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑌 = (𝐴 × { 0 }))
2520, 24neeqtrd 3083 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 ≠ (𝐴 × { 0 }))
26 eqid 2824 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
272, 26, 3, 5, 14mplelf 20680 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹:𝐴⟶(Base‘𝑅))
2827ffnd 6506 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 Fn 𝐴)
294fvexi 6677 . . . . . . . 8 0 ∈ V
30 ovex 7184 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
315, 30rabex2 5224 . . . . . . . . 9 𝐴 ∈ V
32 fnsuppeq0 7856 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3331, 32mp3an2 1446 . . . . . . . 8 ((𝐹 Fn 𝐴0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3428, 29, 33sylancl 589 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3534necon3bid 3058 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) ≠ ∅ ↔ 𝐹 ≠ (𝐴 × { 0 })))
3625, 35mpbird 260 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ≠ ∅)
3712ffnd 6506 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻 Fn 𝐴)
38 suppssdm 7841 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3938, 27fssdm 6522 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ⊆ 𝐴)
40 fnimaeq0 6472 . . . . . . 7 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4137, 39, 40syl2anc 587 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4241necon3bid 3058 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) ≠ ∅ ↔ (𝐹 supp 0 ) ≠ ∅))
4336, 42mpbird 260 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ≠ ∅)
44 imassrn 5929 . . . . . 6 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
4512frnd 6512 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ran 𝐻 ⊆ ℕ0)
4644, 45sstrid 3964 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℕ0)
47 nn0ssre 11900 . . . . . 6 0 ⊆ ℝ
48 ressxr 10685 . . . . . 6 ℝ ⊆ ℝ*
4947, 48sstri 3962 . . . . 5 0 ⊆ ℝ*
5046, 49sstrdi 3965 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
51 xrltso 12533 . . . . 5 < Or ℝ*
52 fisupcl 8932 . . . . 5 (( < Or ℝ* ∧ ((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5351, 52mpan 689 . . . 4 (((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5419, 43, 50, 53syl3anc 1368 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
558, 54eqeltrd 2916 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )))
5637, 39fvelimabd 6731 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹)))
57 rexsupp 7846 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5831, 29, 57mp3an23 1450 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5928, 58syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6056, 59bitrd 282 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6155, 60mpbid 235 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134  {crab 3137  Vcvv 3480  wss 3919  c0 4276  {csn 4550  cmpt 5133   Or wor 5461   × cxp 5541  ccnv 5542  ran crn 5544  cima 5546  Fun wfun 6339   Fn wfn 6340  wf 6341  cfv 6345  (class class class)co 7151   supp csupp 7828  m cmap 8404  Fincfn 8507  supcsup 8903  cr 10536  *cxr 10674   < clt 10675  cn 11636  0cn0 11896  Basecbs 16485  0gc0g 16715   Σg cgsu 16716  Grpcgrp 18105  Ringcrg 19299  fldccnfld 20100   mPoly cmpl 20600   mDeg cmdg 24663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7405  df-om 7577  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-map 8406  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-fsupp 8833  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12897  df-fzo 13040  df-seq 13376  df-hash 13698  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-subg 18278  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-cnfld 20101  df-psr 20603  df-mpl 20605  df-mdeg 24665
This theorem is referenced by:  mdegnn0cl  24681  deg1ldg  24702
  Copyright terms: Public domain W3C validator