MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegldg Structured version   Visualization version   GIF version

Theorem mdegldg 25229
Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdegldg.y 𝑌 = (0g𝑃)
Assertion
Ref Expression
mdegldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   𝑌(𝑥,,𝑚)   0 (𝑚)

Proof of Theorem mdegldg
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 25226 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
873ad2ant2 1133 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
95, 6tdeglem1 25218 . . . . . . 7 𝐻:𝐴⟶ℕ0
109a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻:𝐴⟶ℕ0)
1110ffund 6602 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → Fun 𝐻)
12 simp2 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝐵)
13 simp1 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Ring)
142, 3, 4, 12, 13mplelsfi 21199 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 finSupp 0 )
1514fsuppimpd 9113 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ∈ Fin)
16 imafi 8940 . . . . 5 ((Fun 𝐻 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
1711, 15, 16syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
18 simp3 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝑌)
19 mdegldg.y . . . . . . . 8 𝑌 = (0g𝑃)
202, 3mplrcl 21198 . . . . . . . . 9 (𝐹𝐵𝐼 ∈ V)
21203ad2ant2 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐼 ∈ V)
22 ringgrp 19786 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
23223ad2ant1 1132 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Grp)
242, 5, 4, 19, 21, 23mpl0 21210 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑌 = (𝐴 × { 0 }))
2518, 24neeqtrd 3015 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 ≠ (𝐴 × { 0 }))
26 eqid 2740 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
272, 26, 3, 5, 12mplelf 21202 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹:𝐴⟶(Base‘𝑅))
2827ffnd 6599 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 Fn 𝐴)
294fvexi 6785 . . . . . . . 8 0 ∈ V
30 ovex 7304 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
315, 30rabex2 5262 . . . . . . . . 9 𝐴 ∈ V
32 fnsuppeq0 7999 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3331, 32mp3an2 1448 . . . . . . . 8 ((𝐹 Fn 𝐴0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3428, 29, 33sylancl 586 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3534necon3bid 2990 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) ≠ ∅ ↔ 𝐹 ≠ (𝐴 × { 0 })))
3625, 35mpbird 256 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ≠ ∅)
3710ffnd 6599 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻 Fn 𝐴)
38 suppssdm 7984 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3938, 27fssdm 6618 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ⊆ 𝐴)
40 fnimaeq0 6564 . . . . . . 7 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4137, 39, 40syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4241necon3bid 2990 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) ≠ ∅ ↔ (𝐹 supp 0 ) ≠ ∅))
4336, 42mpbird 256 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ≠ ∅)
44 imassrn 5979 . . . . . 6 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
4510frnd 6606 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ran 𝐻 ⊆ ℕ0)
4644, 45sstrid 3937 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℕ0)
47 nn0ssre 12237 . . . . . 6 0 ⊆ ℝ
48 ressxr 11020 . . . . . 6 ℝ ⊆ ℝ*
4947, 48sstri 3935 . . . . 5 0 ⊆ ℝ*
5046, 49sstrdi 3938 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
51 xrltso 12874 . . . . 5 < Or ℝ*
52 fisupcl 9206 . . . . 5 (( < Or ℝ* ∧ ((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5351, 52mpan 687 . . . 4 (((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5417, 43, 50, 53syl3anc 1370 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
558, 54eqeltrd 2841 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )))
5637, 39fvelimabd 6839 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹)))
57 rexsupp 7989 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5831, 29, 57mp3an23 1452 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5928, 58syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6056, 59bitrd 278 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6155, 60mpbid 231 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  {crab 3070  Vcvv 3431  wss 3892  c0 4262  {csn 4567  cmpt 5162   Or wor 5503   × cxp 5588  ccnv 5589  ran crn 5591  cima 5593  Fun wfun 6426   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271   supp csupp 7968  m cmap 8598  Fincfn 8716  supcsup 9177  cr 10871  *cxr 11009   < clt 11010  cn 11973  0cn0 12233  Basecbs 16910  0gc0g 17148   Σg cgsu 17149  Grpcgrp 18575  Ringcrg 19781  fldccnfld 20595   mPoly cmpl 21107   mDeg cmdg 25213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-sup 9179  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-fz 13239  df-fzo 13382  df-seq 13720  df-hash 14043  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-0g 17150  df-gsum 17151  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-grp 18578  df-minusg 18579  df-subg 18750  df-cntz 18921  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-cring 19784  df-cnfld 20596  df-psr 21110  df-mpl 21112  df-mdeg 25215
This theorem is referenced by:  mdegnn0cl  25234  deg1ldg  25255
  Copyright terms: Public domain W3C validator