MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegldg Structured version   Visualization version   GIF version

Theorem mdegldg 26021
Description: A nonzero polynomial has some coefficient which witnesses its degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
mdegval.d 𝐷 = (𝐼 mDeg 𝑅)
mdegval.p 𝑃 = (𝐼 mPoly 𝑅)
mdegval.b 𝐵 = (Base‘𝑃)
mdegval.z 0 = (0g𝑅)
mdegval.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
mdegval.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
mdegldg.y 𝑌 = (0g𝑃)
Assertion
Ref Expression
mdegldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Distinct variable groups:   𝐴,   𝑚,𝐼   0 ,   𝑥,𝐵   𝑥,𝐹   𝑥,𝐻   ,𝐼   𝑥,𝑅   𝑥, 0   ,𝑚   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑚)   𝐵(,𝑚)   𝐷(,𝑚)   𝑃(𝑥,,𝑚)   𝑅(,𝑚)   𝐹(,𝑚)   𝐻(,𝑚)   𝐼(𝑥)   𝑌(𝑥,,𝑚)   0 (𝑚)

Proof of Theorem mdegldg
StepHypRef Expression
1 mdegval.d . . . . 5 𝐷 = (𝐼 mDeg 𝑅)
2 mdegval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
3 mdegval.b . . . . 5 𝐵 = (Base‘𝑃)
4 mdegval.z . . . . 5 0 = (0g𝑅)
5 mdegval.a . . . . 5 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
6 mdegval.h . . . . 5 𝐻 = (𝐴 ↦ (ℂfld Σg ))
71, 2, 3, 4, 5, 6mdegval 26018 . . . 4 (𝐹𝐵 → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
873ad2ant2 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) = sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ))
95, 6tdeglem1 26013 . . . . . . 7 𝐻:𝐴⟶ℕ0
109a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻:𝐴⟶ℕ0)
1110ffund 6709 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → Fun 𝐻)
12 simp2 1137 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝐵)
132, 3, 4, 12mplelsfi 21953 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 finSupp 0 )
1413fsuppimpd 9379 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ∈ Fin)
15 imafi 9323 . . . . 5 ((Fun 𝐻 ∧ (𝐹 supp 0 ) ∈ Fin) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
1611, 14, 15syl2anc 584 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ∈ Fin)
17 simp3 1138 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹𝑌)
18 mdegldg.y . . . . . . . 8 𝑌 = (0g𝑃)
192, 3mplrcl 21952 . . . . . . . . 9 (𝐹𝐵𝐼 ∈ V)
20193ad2ant2 1134 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐼 ∈ V)
21 ringgrp 20196 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
22213ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑅 ∈ Grp)
232, 5, 4, 18, 20, 22mpl0 21964 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝑌 = (𝐴 × { 0 }))
2417, 23neeqtrd 3001 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 ≠ (𝐴 × { 0 }))
25 eqid 2735 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
262, 25, 3, 5, 12mplelf 21956 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹:𝐴⟶(Base‘𝑅))
2726ffnd 6706 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐹 Fn 𝐴)
284fvexi 6889 . . . . . . . 8 0 ∈ V
29 ovex 7436 . . . . . . . . . 10 (ℕ0m 𝐼) ∈ V
305, 29rabex2 5311 . . . . . . . . 9 𝐴 ∈ V
31 fnsuppeq0 8189 . . . . . . . . 9 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3230, 31mp3an2 1451 . . . . . . . 8 ((𝐹 Fn 𝐴0 ∈ V) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3327, 28, 32sylancl 586 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) = ∅ ↔ 𝐹 = (𝐴 × { 0 })))
3433necon3bid 2976 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐹 supp 0 ) ≠ ∅ ↔ 𝐹 ≠ (𝐴 × { 0 })))
3524, 34mpbird 257 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ≠ ∅)
3610ffnd 6706 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → 𝐻 Fn 𝐴)
37 suppssdm 8174 . . . . . . . 8 (𝐹 supp 0 ) ⊆ dom 𝐹
3837, 26fssdm 6724 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐹 supp 0 ) ⊆ 𝐴)
39 fnimaeq0 6670 . . . . . . 7 ((𝐻 Fn 𝐴 ∧ (𝐹 supp 0 ) ⊆ 𝐴) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4036, 38, 39syl2anc 584 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) = ∅ ↔ (𝐹 supp 0 ) = ∅))
4140necon3bid 2976 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐻 “ (𝐹 supp 0 )) ≠ ∅ ↔ (𝐹 supp 0 ) ≠ ∅))
4235, 41mpbird 257 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ≠ ∅)
43 imassrn 6058 . . . . . 6 (𝐻 “ (𝐹 supp 0 )) ⊆ ran 𝐻
4410frnd 6713 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ran 𝐻 ⊆ ℕ0)
4543, 44sstrid 3970 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℕ0)
46 nn0ssre 12503 . . . . . 6 0 ⊆ ℝ
47 ressxr 11277 . . . . . 6 ℝ ⊆ ℝ*
4846, 47sstri 3968 . . . . 5 0 ⊆ ℝ*
4945, 48sstrdi 3971 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)
50 xrltso 13155 . . . . 5 < Or ℝ*
51 fisupcl 9480 . . . . 5 (( < Or ℝ* ∧ ((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*)) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5250, 51mpan 690 . . . 4 (((𝐻 “ (𝐹 supp 0 )) ∈ Fin ∧ (𝐻 “ (𝐹 supp 0 )) ≠ ∅ ∧ (𝐻 “ (𝐹 supp 0 )) ⊆ ℝ*) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
5316, 42, 49, 52syl3anc 1373 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → sup((𝐻 “ (𝐹 supp 0 )), ℝ*, < ) ∈ (𝐻 “ (𝐹 supp 0 )))
548, 53eqeltrd 2834 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )))
5536, 38fvelimabd 6951 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹)))
56 rexsupp 8179 . . . . 5 ((𝐹 Fn 𝐴𝐴 ∈ V ∧ 0 ∈ V) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5730, 28, 56mp3an23 1455 . . . 4 (𝐹 Fn 𝐴 → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5827, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → (∃𝑥 ∈ (𝐹 supp 0 )(𝐻𝑥) = (𝐷𝐹) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
5955, 58bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ((𝐷𝐹) ∈ (𝐻 “ (𝐹 supp 0 )) ↔ ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹))))
6054, 59mpbid 232 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹𝑌) → ∃𝑥𝐴 ((𝐹𝑥) ≠ 0 ∧ (𝐻𝑥) = (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  wss 3926  c0 4308  {csn 4601  cmpt 5201   Or wor 5560   × cxp 5652  ccnv 5653  ran crn 5655  cima 5657  Fun wfun 6524   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403   supp csupp 8157  m cmap 8838  Fincfn 8957  supcsup 9450  cr 11126  *cxr 11266   < clt 11267  cn 12238  0cn0 12499  Basecbs 17226  0gc0g 17451   Σg cgsu 17452  Grpcgrp 18914  Ringcrg 20191  fldccnfld 21313   mPoly cmpl 21864   mDeg cmdg 26008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-submnd 18760  df-grp 18917  df-minusg 18918  df-subg 19104  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-ur 20140  df-ring 20193  df-cring 20194  df-cnfld 21314  df-psr 21867  df-mpl 21869  df-mdeg 26010
This theorem is referenced by:  mdegnn0cl  26026  deg1ldg  26047
  Copyright terms: Public domain W3C validator