Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnopafv2b Structured version   Visualization version   GIF version

Theorem fnopafv2b 47245
Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb 6935. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
fnopafv2b ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))

Proof of Theorem fnopafv2b
StepHypRef Expression
1 fnbrafv2b 47244 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
2 df-br 5125 . 2 (𝐵𝐹𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹)
31, 2bitrdi 287 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4612   class class class wbr 5124   Fn wfn 6531  ''''cafv2 47204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-res 5671  df-iota 6489  df-fun 6538  df-fn 6539  df-dfat 47115  df-afv2 47205
This theorem is referenced by:  funopafv2b  47247
  Copyright terms: Public domain W3C validator