Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnopafv2b Structured version   Visualization version   GIF version

Theorem fnopafv2b 46676
Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb 6956. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
fnopafv2b ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))

Proof of Theorem fnopafv2b
StepHypRef Expression
1 fnbrafv2b 46675 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
2 df-br 5153 . 2 (𝐵𝐹𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹)
31, 2bitrdi 286 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cop 4638   class class class wbr 5152   Fn wfn 6548  ''''cafv2 46635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-res 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-dfat 46546  df-afv2 46636
This theorem is referenced by:  funopafv2b  46678
  Copyright terms: Public domain W3C validator