Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funbrafv22b Structured version   Visualization version   GIF version

Theorem funbrafv22b 47165
Description: Equivalence of function value and binary relation, analogous to funbrfvb 6975. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
funbrafv22b ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem funbrafv22b
StepHypRef Expression
1 funfn 6608 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnbrafv2b 47163 . 2 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
31, 2sylanb 580 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  dom cdm 5700  Fun wfun 6567   Fn wfn 6568  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-dfat 47034  df-afv2 47124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator