Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funopafv2b Structured version   Visualization version   GIF version

Theorem funopafv2b 47200
Description: Equivalence of function value and ordered pair membership, analogous to funopfvb 6962. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
funopafv2b ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))

Proof of Theorem funopafv2b
StepHypRef Expression
1 funfn 6597 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnopafv2b 47198 . 2 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
31, 2sylanb 581 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  cop 4636  dom cdm 5688  Fun wfun 6556   Fn wfn 6557  ''''cafv2 47157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-res 5700  df-iota 6515  df-fun 6564  df-fn 6565  df-dfat 47068  df-afv2 47158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator