| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funopafv2b | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and ordered pair membership, analogous to funopfvb 6932. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| funopafv2b | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6565 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | fnopafv2b 47226 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | |
| 3 | 1, 2 | sylanb 581 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 dom cdm 5654 Fun wfun 6524 Fn wfn 6525 ''''cafv2 47185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6483 df-fun 6532 df-fn 6533 df-dfat 47096 df-afv2 47186 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |