Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funopafv2b Structured version   Visualization version   GIF version

Theorem funopafv2b 43975
 Description: Equivalence of function value and ordered pair membership, analogous to funopfvb 6706. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
funopafv2b ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))

Proof of Theorem funopafv2b
StepHypRef Expression
1 funfn 6362 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnopafv2b 43973 . 2 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
31, 2sylanb 584 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹''''𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ⟨cop 4534  dom cdm 5523  Fun wfun 6326   Fn wfn 6327  ''''cafv2 43932 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-res 5535  df-iota 6291  df-fun 6334  df-fn 6335  df-dfat 43843  df-afv2 43933 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator