![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima2d | Structured version Visualization version GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.) |
Ref | Expression |
---|---|
funfvima2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
funfvima2d | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvima2d.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6720 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
3 | ssidd 3996 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) | |
4 | 1 | fdmd 6727 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
5 | 3, 4 | sseqtrrd 4014 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
6 | funfvima2 7238 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) | |
7 | 2, 5, 6 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) |
8 | 7 | imp 405 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3940 dom cdm 5672 “ cima 5675 Fun wfun 6536 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
This theorem is referenced by: imo72b2lem1 43663 fundcmpsurbijinjpreimafv 46809 |
Copyright terms: Public domain | W3C validator |