| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvima2d | Structured version Visualization version GIF version | ||
| Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| funfvima2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| funfvima2d | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvima2d.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6692 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 3 | ssidd 3970 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) | |
| 4 | 1 | fdmd 6698 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 5 | 3, 4 | sseqtrrd 3984 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 6 | funfvima2 7205 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) | |
| 7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 dom cdm 5638 “ cima 5641 Fun wfun 6505 ⟶wf 6507 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 |
| This theorem is referenced by: imo72b2lem1 44158 fundcmpsurbijinjpreimafv 47408 imaid 49143 imaf1co 49144 |
| Copyright terms: Public domain | W3C validator |