| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvima2d | Structured version Visualization version GIF version | ||
| Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.) |
| Ref | Expression |
|---|---|
| funfvima2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| funfvima2d | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvima2d.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6710 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 3 | ssidd 3982 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) | |
| 4 | 1 | fdmd 6716 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 5 | 3, 4 | sseqtrrd 3996 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 6 | funfvima2 7223 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) | |
| 7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) |
| 8 | 7 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 dom cdm 5654 “ cima 5657 Fun wfun 6525 ⟶wf 6527 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 |
| This theorem is referenced by: imo72b2lem1 44193 fundcmpsurbijinjpreimafv 47421 imaid 49094 imaf1co 49095 |
| Copyright terms: Public domain | W3C validator |