![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima2d | Structured version Visualization version GIF version |
Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.) |
Ref | Expression |
---|---|
funfvima2d.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
funfvima2d | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvima2d.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6721 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
3 | ssidd 4005 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝐴) | |
4 | 1 | fdmd 6728 | . . . 4 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
5 | 3, 4 | sseqtrrd 4023 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
6 | funfvima2 7232 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) | |
7 | 2, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴))) |
8 | 7 | imp 407 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ (𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3948 dom cdm 5676 “ cima 5679 Fun wfun 6537 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 |
This theorem is referenced by: imo72b2lem1 42911 fundcmpsurbijinjpreimafv 46065 |
Copyright terms: Public domain | W3C validator |