MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2d Structured version   Visualization version   GIF version

Theorem funfvima2d 7108
Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.)
Hypothesis
Ref Expression
funfvima2d.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
funfvima2d ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))

Proof of Theorem funfvima2d
StepHypRef Expression
1 funfvima2d.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21ffund 6604 . . 3 (𝜑 → Fun 𝐹)
3 ssidd 3944 . . . 4 (𝜑𝐴𝐴)
41fdmd 6611 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
53, 4sseqtrrd 3962 . . 3 (𝜑𝐴 ⊆ dom 𝐹)
6 funfvima2 7107 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑋𝐴 → (𝐹𝑋) ∈ (𝐹𝐴)))
72, 5, 6syl2anc 584 . 2 (𝜑 → (𝑋𝐴 → (𝐹𝑋) ∈ (𝐹𝐴)))
87imp 407 1 ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3887  dom cdm 5589  cima 5592  Fun wfun 6427  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  imo72b2lem1  41780  fundcmpsurbijinjpreimafv  44859
  Copyright terms: Public domain W3C validator