MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2d Structured version   Visualization version   GIF version

Theorem funfvima2d 7239
Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.)
Hypothesis
Ref Expression
funfvima2d.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
funfvima2d ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))

Proof of Theorem funfvima2d
StepHypRef Expression
1 funfvima2d.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21ffund 6720 . . 3 (𝜑 → Fun 𝐹)
3 ssidd 3996 . . . 4 (𝜑𝐴𝐴)
41fdmd 6727 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
53, 4sseqtrrd 4014 . . 3 (𝜑𝐴 ⊆ dom 𝐹)
6 funfvima2 7238 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑋𝐴 → (𝐹𝑋) ∈ (𝐹𝐴)))
72, 5, 6syl2anc 582 . 2 (𝜑 → (𝑋𝐴 → (𝐹𝑋) ∈ (𝐹𝐴)))
87imp 405 1 ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2098  wss 3940  dom cdm 5672  cima 5675  Fun wfun 6536  wf 6538  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  imo72b2lem1  43663  fundcmpsurbijinjpreimafv  46809
  Copyright terms: Public domain W3C validator