MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2d Structured version   Visualization version   GIF version

Theorem funfvima2d 7172
Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by AV, 23-Mar-2024.)
Hypothesis
Ref Expression
funfvima2d.1 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
funfvima2d ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))

Proof of Theorem funfvima2d
StepHypRef Expression
1 funfvima2d.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21ffund 6660 . . 3 (𝜑 → Fun 𝐹)
3 ssidd 3961 . . . 4 (𝜑𝐴𝐴)
41fdmd 6666 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
53, 4sseqtrrd 3975 . . 3 (𝜑𝐴 ⊆ dom 𝐹)
6 funfvima2 7171 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝑋𝐴 → (𝐹𝑋) ∈ (𝐹𝐴)))
72, 5, 6syl2anc 584 . 2 (𝜑 → (𝑋𝐴 → (𝐹𝑋) ∈ (𝐹𝐴)))
87imp 406 1 ((𝜑𝑋𝐴) → (𝐹𝑋) ∈ (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3905  dom cdm 5623  cima 5626  Fun wfun 6480  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  imo72b2lem1  44142  fundcmpsurbijinjpreimafv  47392  imaid  49140  imaf1co  49141
  Copyright terms: Public domain W3C validator