| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version | ||
| Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6638 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
| 4 | fndm 6641 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
| 6 | 3, 5 | sseqtrrd 3996 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
| 7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 9 | funfvima2 7223 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
| 10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 dom cdm 5654 “ cima 5657 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: fnfvimad 7226 isomin 7330 isofrlem 7333 fnwelem 8130 fimaproj 8134 php3 9223 php3OLD 9233 fissuni 9369 unxpwdom2 9602 cantnflt 9686 dfac12lem2 10159 ackbij2 10256 isf34lem7 10393 isf34lem6 10394 zorn2lem2 10511 ttukeylem5 10527 tskuni 10797 axpre-sup 11183 limsupval2 15496 mgmhmima 18693 mhmimalem 18802 mhmima 18803 ghmnsgima 19223 psgnunilem1 19474 dprdfeq0 20005 dprd2dlem1 20024 rhmimasubrnglem 20525 lmhmima 21005 lmcnp 23242 basqtop 23649 tgqtop 23650 kqfvima 23668 reghmph 23731 uzrest 23835 qustgpopn 24058 qustgplem 24059 cphsqrtcl 25136 lhop 25973 ig1peu 26132 ig1pdvds 26137 plypf1 26169 nosupno 27667 nosupbday 27669 noinfno 27682 noinfbday 27684 noetasuplem4 27700 noetainflem4 27704 eqscut2 27770 scutun12 27774 scutbdaybnd 27779 scutbdaybnd2 27780 scutbdaylt 27782 madebdaylemlrcut 27862 cofcut1 27880 cofcutr 27884 lrrecfr 27902 negsproplem4 27989 negsproplem5 27990 negsproplem6 27991 f1otrg 28850 txomap 33865 sitgaddlemb 34380 f1resrcmplf1dlem 35117 cvmopnlem 35300 mrsubrn 35535 msubrn 35551 poimirlem4 37648 poimirlem6 37650 poimirlem7 37651 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 poimirlem23 37667 cnambfre 37692 ftc1anclem7 37723 ftc1anc 37725 aks6d1c2 42143 aks6d1c7lem1 42193 isnumbasgrplem1 43125 relpmin 44977 relpfrlem 44978 permaxun 45036 funimaeq 45270 |
| Copyright terms: Public domain | W3C validator |