Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version |
Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
Ref | Expression |
---|---|
fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6517 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | simp2 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
4 | fndm 6520 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
6 | 3, 5 | sseqtrrd 3958 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
8 | simp3 1136 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
9 | funfvima2 7089 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 dom cdm 5580 “ cima 5583 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: fnfvimad 7092 isomin 7188 isofrlem 7191 fnwelem 7943 fimaproj 7947 php3 8899 fissuni 9054 unxpwdom2 9277 cantnflt 9360 dfac12lem2 9831 ackbij2 9930 isf34lem7 10066 isf34lem6 10067 zorn2lem2 10184 ttukeylem5 10200 tskuni 10470 axpre-sup 10856 limsupval2 15117 mhmima 18378 ghmnsgima 18773 psgnunilem1 19016 dprdfeq0 19540 dprd2dlem1 19559 lmhmima 20224 lmcnp 22363 basqtop 22770 tgqtop 22771 kqfvima 22789 reghmph 22852 uzrest 22956 qustgpopn 23179 qustgplem 23180 cphsqrtcl 24253 lhop 25085 ig1peu 25241 ig1pdvds 25246 plypf1 25278 f1otrg 27136 txomap 31686 sitgaddlemb 32215 f1resrcmplf1dlem 32958 cvmopnlem 33140 mrsubrn 33375 msubrn 33391 nosupno 33833 nosupbday 33835 noinfno 33848 noinfbday 33850 noetasuplem4 33866 noetainflem4 33870 eqscut2 33927 scutun12 33931 scutbdaybnd 33936 scutbdaybnd2 33937 scutbdaylt 33939 madebdaylemlrcut 34006 cofcut1 34017 cofcutr 34019 lrrecfr 34027 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem23 35727 cnambfre 35752 ftc1anclem7 35783 ftc1anc 35785 isnumbasgrplem1 40842 funimaeq 42681 mgmhmima 45244 |
Copyright terms: Public domain | W3C validator |