| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version | ||
| Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6586 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
| 4 | fndm 6589 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
| 6 | 3, 5 | sseqtrrd 3968 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
| 7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 9 | funfvima2 7171 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
| 10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 dom cdm 5619 “ cima 5622 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: fnfvimad 7174 isomin 7277 isofrlem 7280 fnwelem 8067 fimaproj 8071 php3 9125 fissuni 9248 unxpwdom2 9481 cantnflt 9569 dfac12lem2 10043 ackbij2 10140 isf34lem7 10277 isf34lem6 10278 zorn2lem2 10395 ttukeylem5 10411 tskuni 10681 axpre-sup 11067 limsupval2 15389 mgmhmima 18625 mhmimalem 18734 mhmima 18735 ghmnsgima 19154 psgnunilem1 19407 dprdfeq0 19938 dprd2dlem1 19957 rhmimasubrnglem 20482 lmhmima 20983 lmcnp 23220 basqtop 23627 tgqtop 23628 kqfvima 23646 reghmph 23709 uzrest 23813 qustgpopn 24036 qustgplem 24037 cphsqrtcl 25112 lhop 25949 ig1peu 26108 ig1pdvds 26113 plypf1 26145 nosupno 27643 nosupbday 27645 noinfno 27658 noinfbday 27660 noetasuplem4 27676 noetainflem4 27680 eqscut2 27748 scutun12 27752 scutbdaybnd 27757 scutbdaybnd2 27758 scutbdaylt 27760 madebdaylemlrcut 27845 cofcut1 27865 cofcutr 27869 lrrecfr 27887 negsproplem4 27974 negsproplem5 27975 negsproplem6 27976 f1otrg 28850 txomap 33868 sitgaddlemb 34382 f1resrcmplf1dlem 35119 cvmopnlem 35343 mrsubrn 35578 msubrn 35594 poimirlem4 37684 poimirlem6 37686 poimirlem7 37687 poimirlem16 37696 poimirlem17 37697 poimirlem19 37699 poimirlem20 37700 poimirlem23 37703 cnambfre 37728 ftc1anclem7 37759 ftc1anc 37761 aks6d1c2 42243 aks6d1c7lem1 42293 isnumbasgrplem1 43218 relpmin 45069 relpfrlem 45070 permaxun 45128 funimaeq 45367 |
| Copyright terms: Public domain | W3C validator |