![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version |
Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
Ref | Expression |
---|---|
fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6648 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | simp2 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
4 | fndm 6651 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
6 | 3, 5 | sseqtrrd 4022 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
7 | 2, 6 | jca 510 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
8 | simp3 1136 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
9 | funfvima2 7234 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 dom cdm 5675 “ cima 5678 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-fv 6550 |
This theorem is referenced by: fnfvimad 7237 isomin 7336 isofrlem 7339 fnwelem 8119 fimaproj 8123 php3 9214 php3OLD 9226 fissuni 9359 unxpwdom2 9585 cantnflt 9669 dfac12lem2 10141 ackbij2 10240 isf34lem7 10376 isf34lem6 10377 zorn2lem2 10494 ttukeylem5 10510 tskuni 10780 axpre-sup 11166 limsupval2 15428 mgmhmima 18640 mhmimalem 18741 mhmima 18742 ghmnsgima 19154 psgnunilem1 19402 dprdfeq0 19933 dprd2dlem1 19952 rhmimasubrnglem 20453 lmhmima 20802 lmcnp 23028 basqtop 23435 tgqtop 23436 kqfvima 23454 reghmph 23517 uzrest 23621 qustgpopn 23844 qustgplem 23845 cphsqrtcl 24932 lhop 25768 ig1peu 25924 ig1pdvds 25929 plypf1 25961 nosupno 27442 nosupbday 27444 noinfno 27457 noinfbday 27459 noetasuplem4 27475 noetainflem4 27479 eqscut2 27544 scutun12 27548 scutbdaybnd 27553 scutbdaybnd2 27554 scutbdaylt 27556 madebdaylemlrcut 27630 cofcut1 27645 cofcutr 27649 lrrecfr 27665 negsproplem4 27744 negsproplem5 27745 negsproplem6 27746 f1otrg 28389 txomap 33112 sitgaddlemb 33645 f1resrcmplf1dlem 34387 cvmopnlem 34567 mrsubrn 34802 msubrn 34818 poimirlem4 36795 poimirlem6 36797 poimirlem7 36798 poimirlem16 36807 poimirlem17 36808 poimirlem19 36810 poimirlem20 36811 poimirlem23 36814 cnambfre 36839 ftc1anclem7 36870 ftc1anc 36872 isnumbasgrplem1 42145 funimaeq 44248 |
Copyright terms: Public domain | W3C validator |