![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version |
Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
Ref | Expression |
---|---|
fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6669 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | simp2 1136 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
4 | fndm 6672 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
6 | 3, 5 | sseqtrrd 4037 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
8 | simp3 1137 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
9 | funfvima2 7251 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 dom cdm 5689 “ cima 5692 Fun wfun 6557 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: fnfvimad 7254 isomin 7357 isofrlem 7360 fnwelem 8155 fimaproj 8159 php3 9247 php3OLD 9259 fissuni 9395 unxpwdom2 9626 cantnflt 9710 dfac12lem2 10183 ackbij2 10280 isf34lem7 10417 isf34lem6 10418 zorn2lem2 10535 ttukeylem5 10551 tskuni 10821 axpre-sup 11207 limsupval2 15513 mgmhmima 18741 mhmimalem 18850 mhmima 18851 ghmnsgima 19271 psgnunilem1 19526 dprdfeq0 20057 dprd2dlem1 20076 rhmimasubrnglem 20582 lmhmima 21064 lmcnp 23328 basqtop 23735 tgqtop 23736 kqfvima 23754 reghmph 23817 uzrest 23921 qustgpopn 24144 qustgplem 24145 cphsqrtcl 25232 lhop 26070 ig1peu 26229 ig1pdvds 26234 plypf1 26266 nosupno 27763 nosupbday 27765 noinfno 27778 noinfbday 27780 noetasuplem4 27796 noetainflem4 27800 eqscut2 27866 scutun12 27870 scutbdaybnd 27875 scutbdaybnd2 27876 scutbdaylt 27878 madebdaylemlrcut 27952 cofcut1 27969 cofcutr 27973 lrrecfr 27991 negsproplem4 28078 negsproplem5 28079 negsproplem6 28080 f1otrg 28894 txomap 33795 sitgaddlemb 34330 f1resrcmplf1dlem 35079 cvmopnlem 35263 mrsubrn 35498 msubrn 35514 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem23 37630 cnambfre 37655 ftc1anclem7 37686 ftc1anc 37688 aks6d1c2 42112 aks6d1c7lem1 42162 isnumbasgrplem1 43090 funimaeq 45191 |
Copyright terms: Public domain | W3C validator |