![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version |
Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
Ref | Expression |
---|---|
fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6679 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | simp2 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
4 | fndm 6682 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
6 | 3, 5 | sseqtrrd 4050 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
8 | simp3 1138 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
9 | funfvima2 7268 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 dom cdm 5700 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: fnfvimad 7271 isomin 7373 isofrlem 7376 fnwelem 8172 fimaproj 8176 php3 9275 php3OLD 9287 fissuni 9427 unxpwdom2 9657 cantnflt 9741 dfac12lem2 10214 ackbij2 10311 isf34lem7 10448 isf34lem6 10449 zorn2lem2 10566 ttukeylem5 10582 tskuni 10852 axpre-sup 11238 limsupval2 15526 mgmhmima 18753 mhmimalem 18859 mhmima 18860 ghmnsgima 19280 psgnunilem1 19535 dprdfeq0 20066 dprd2dlem1 20085 rhmimasubrnglem 20591 lmhmima 21069 lmcnp 23333 basqtop 23740 tgqtop 23741 kqfvima 23759 reghmph 23822 uzrest 23926 qustgpopn 24149 qustgplem 24150 cphsqrtcl 25237 lhop 26075 ig1peu 26234 ig1pdvds 26239 plypf1 26271 nosupno 27766 nosupbday 27768 noinfno 27781 noinfbday 27783 noetasuplem4 27799 noetainflem4 27803 eqscut2 27869 scutun12 27873 scutbdaybnd 27878 scutbdaybnd2 27879 scutbdaylt 27881 madebdaylemlrcut 27955 cofcut1 27972 cofcutr 27976 lrrecfr 27994 negsproplem4 28081 negsproplem5 28082 negsproplem6 28083 f1otrg 28897 txomap 33780 sitgaddlemb 34313 f1resrcmplf1dlem 35062 cvmopnlem 35246 mrsubrn 35481 msubrn 35497 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem23 37603 cnambfre 37628 ftc1anclem7 37659 ftc1anc 37661 aks6d1c2 42087 aks6d1c7lem1 42137 isnumbasgrplem1 43058 funimaeq 45155 |
Copyright terms: Public domain | W3C validator |