| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version | ||
| Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6581 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
| 4 | fndm 6584 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
| 6 | 3, 5 | sseqtrrd 3972 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
| 7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 9 | funfvima2 7165 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
| 10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 dom cdm 5616 “ cima 5619 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fnfvimad 7168 isomin 7271 isofrlem 7274 fnwelem 8061 fimaproj 8065 php3 9118 fissuni 9241 unxpwdom2 9474 cantnflt 9562 dfac12lem2 10033 ackbij2 10130 isf34lem7 10267 isf34lem6 10268 zorn2lem2 10385 ttukeylem5 10401 tskuni 10671 axpre-sup 11057 limsupval2 15384 mgmhmima 18620 mhmimalem 18729 mhmima 18730 ghmnsgima 19150 psgnunilem1 19403 dprdfeq0 19934 dprd2dlem1 19953 rhmimasubrnglem 20478 lmhmima 20979 lmcnp 23217 basqtop 23624 tgqtop 23625 kqfvima 23643 reghmph 23706 uzrest 23810 qustgpopn 24033 qustgplem 24034 cphsqrtcl 25109 lhop 25946 ig1peu 26105 ig1pdvds 26110 plypf1 26142 nosupno 27640 nosupbday 27642 noinfno 27655 noinfbday 27657 noetasuplem4 27673 noetainflem4 27677 eqscut2 27745 scutun12 27749 scutbdaybnd 27754 scutbdaybnd2 27755 scutbdaylt 27757 madebdaylemlrcut 27842 cofcut1 27862 cofcutr 27866 lrrecfr 27884 negsproplem4 27971 negsproplem5 27972 negsproplem6 27973 f1otrg 28847 txomap 33842 sitgaddlemb 34356 f1resrcmplf1dlem 35093 cvmopnlem 35310 mrsubrn 35545 msubrn 35561 poimirlem4 37663 poimirlem6 37665 poimirlem7 37666 poimirlem16 37675 poimirlem17 37676 poimirlem19 37678 poimirlem20 37679 poimirlem23 37682 cnambfre 37707 ftc1anclem7 37738 ftc1anc 37740 aks6d1c2 42162 aks6d1c7lem1 42212 isnumbasgrplem1 43133 relpmin 44984 relpfrlem 44985 permaxun 45043 funimaeq 45282 |
| Copyright terms: Public domain | W3C validator |