| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version | ||
| Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6618 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
| 4 | fndm 6621 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
| 6 | 3, 5 | sseqtrrd 3984 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
| 7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 9 | funfvima2 7205 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
| 10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 dom cdm 5638 “ cima 5641 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: fnfvimad 7208 isomin 7312 isofrlem 7315 fnwelem 8110 fimaproj 8114 php3 9173 fissuni 9308 unxpwdom2 9541 cantnflt 9625 dfac12lem2 10098 ackbij2 10195 isf34lem7 10332 isf34lem6 10333 zorn2lem2 10450 ttukeylem5 10466 tskuni 10736 axpre-sup 11122 limsupval2 15446 mgmhmima 18642 mhmimalem 18751 mhmima 18752 ghmnsgima 19172 psgnunilem1 19423 dprdfeq0 19954 dprd2dlem1 19973 rhmimasubrnglem 20474 lmhmima 20954 lmcnp 23191 basqtop 23598 tgqtop 23599 kqfvima 23617 reghmph 23680 uzrest 23784 qustgpopn 24007 qustgplem 24008 cphsqrtcl 25084 lhop 25921 ig1peu 26080 ig1pdvds 26085 plypf1 26117 nosupno 27615 nosupbday 27617 noinfno 27630 noinfbday 27632 noetasuplem4 27648 noetainflem4 27652 eqscut2 27718 scutun12 27722 scutbdaybnd 27727 scutbdaybnd2 27728 scutbdaylt 27730 madebdaylemlrcut 27810 cofcut1 27828 cofcutr 27832 lrrecfr 27850 negsproplem4 27937 negsproplem5 27938 negsproplem6 27939 f1otrg 28798 txomap 33824 sitgaddlemb 34339 f1resrcmplf1dlem 35076 cvmopnlem 35265 mrsubrn 35500 msubrn 35516 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 poimirlem23 37637 cnambfre 37662 ftc1anclem7 37693 ftc1anc 37695 aks6d1c2 42118 aks6d1c7lem1 42168 isnumbasgrplem1 43090 relpmin 44942 relpfrlem 44943 permaxun 45001 funimaeq 45240 |
| Copyright terms: Public domain | W3C validator |