Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version |
Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
Ref | Expression |
---|---|
fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6479 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
2 | 1 | 3ad2ant1 1135 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
3 | simp2 1139 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
4 | fndm 6481 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
5 | 4 | 3ad2ant1 1135 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
6 | 3, 5 | sseqtrrd 3942 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
7 | 2, 6 | jca 515 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
8 | simp3 1140 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
9 | funfvima2 7047 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 dom cdm 5551 “ cima 5554 Fun wfun 6374 Fn wfn 6375 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-fv 6388 |
This theorem is referenced by: fnfvimad 7050 isomin 7146 isofrlem 7149 fnwelem 7898 fimaproj 7902 php3 8832 fissuni 8981 unxpwdom2 9204 cantnflt 9287 dfac12lem2 9758 ackbij2 9857 isf34lem7 9993 isf34lem6 9994 zorn2lem2 10111 ttukeylem5 10127 tskuni 10397 axpre-sup 10783 limsupval2 15041 mhmima 18251 ghmnsgima 18646 psgnunilem1 18885 dprdfeq0 19409 dprd2dlem1 19428 lmhmima 20084 lmcnp 22201 basqtop 22608 tgqtop 22609 kqfvima 22627 reghmph 22690 uzrest 22794 qustgpopn 23017 qustgplem 23018 cphsqrtcl 24081 lhop 24913 ig1peu 25069 ig1pdvds 25074 plypf1 25106 f1otrg 26962 txomap 31498 sitgaddlemb 32027 f1resrcmplf1dlem 32771 cvmopnlem 32953 mrsubrn 33188 msubrn 33204 nosupno 33643 nosupbday 33645 noinfno 33658 noinfbday 33660 noetasuplem4 33676 noetainflem4 33680 eqscut2 33737 scutun12 33741 scutbdaybnd 33746 scutbdaybnd2 33747 scutbdaylt 33749 madebdaylemlrcut 33816 cofcut1 33827 cofcutr 33829 lrrecfr 33837 poimirlem4 35518 poimirlem6 35520 poimirlem7 35521 poimirlem16 35530 poimirlem17 35531 poimirlem19 35533 poimirlem20 35534 poimirlem23 35537 cnambfre 35562 ftc1anclem7 35593 ftc1anc 35595 isnumbasgrplem1 40629 funimaeq 42464 mgmhmima 45029 |
Copyright terms: Public domain | W3C validator |