| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnfvima | Structured version Visualization version GIF version | ||
| Description: The function value of an operand in a set is contained in the image of that set, using the Fn abbreviation. (Contributed by Stefan O'Rear, 10-Mar-2015.) |
| Ref | Expression |
|---|---|
| fnfvima | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6586 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → Fun 𝐹) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐴) | |
| 4 | fndm 6589 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → dom 𝐹 = 𝐴) |
| 6 | 3, 5 | sseqtrrd 3975 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ dom 𝐹) |
| 7 | 2, 6 | jca 511 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 9 | funfvima2 7171 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑆 ⊆ dom 𝐹) → (𝑋 ∈ 𝑆 → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆))) | |
| 10 | 7, 8, 9 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑆 ⊆ 𝐴 ∧ 𝑋 ∈ 𝑆) → (𝐹‘𝑋) ∈ (𝐹 “ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 dom cdm 5623 “ cima 5626 Fun wfun 6480 Fn wfn 6481 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: fnfvimad 7174 isomin 7278 isofrlem 7281 fnwelem 8071 fimaproj 8075 php3 9133 fissuni 9266 unxpwdom2 9499 cantnflt 9587 dfac12lem2 10058 ackbij2 10155 isf34lem7 10292 isf34lem6 10293 zorn2lem2 10410 ttukeylem5 10426 tskuni 10696 axpre-sup 11082 limsupval2 15405 mgmhmima 18607 mhmimalem 18716 mhmima 18717 ghmnsgima 19137 psgnunilem1 19390 dprdfeq0 19921 dprd2dlem1 19940 rhmimasubrnglem 20468 lmhmima 20969 lmcnp 23207 basqtop 23614 tgqtop 23615 kqfvima 23633 reghmph 23696 uzrest 23800 qustgpopn 24023 qustgplem 24024 cphsqrtcl 25100 lhop 25937 ig1peu 26096 ig1pdvds 26101 plypf1 26133 nosupno 27631 nosupbday 27633 noinfno 27646 noinfbday 27648 noetasuplem4 27664 noetainflem4 27668 eqscut2 27735 scutun12 27739 scutbdaybnd 27744 scutbdaybnd2 27745 scutbdaylt 27747 madebdaylemlrcut 27831 cofcut1 27851 cofcutr 27855 lrrecfr 27873 negsproplem4 27960 negsproplem5 27961 negsproplem6 27962 f1otrg 28834 txomap 33800 sitgaddlemb 34315 f1resrcmplf1dlem 35052 cvmopnlem 35250 mrsubrn 35485 msubrn 35501 poimirlem4 37603 poimirlem6 37605 poimirlem7 37606 poimirlem16 37615 poimirlem17 37616 poimirlem19 37618 poimirlem20 37619 poimirlem23 37622 cnambfre 37647 ftc1anclem7 37678 ftc1anc 37680 aks6d1c2 42103 aks6d1c7lem1 42153 isnumbasgrplem1 43074 relpmin 44926 relpfrlem 44927 permaxun 44985 funimaeq 45224 |
| Copyright terms: Public domain | W3C validator |