| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version | ||
| Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
| Ref | Expression |
|---|---|
| funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvima 7170 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 5 | ssel 3931 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
| 6 | 4, 5 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 dom cdm 5623 “ cima 5626 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-fv 6494 |
| This theorem is referenced by: funfvima2d 7172 fnfvima 7173 resfvresima 7175 f1oweALT 7914 tz7.49 8374 phimullem 16708 mrcuni 17545 frlmsslsp 21721 lindfrn 21746 iscldtop 22998 1stcfb 23348 2ndcomap 23361 rnelfm 23856 fmfnfmlem2 23858 fmfnfmlem4 23860 qtopbaslem 24662 tgqioo 24704 bndth 24873 volsup 25473 dyadmbllem 25516 opnmbllem 25518 itg1addlem4 25616 c1liplem1 25917 dvcnvrelem1 25938 dvcnvrelem2 25939 plyco0 26113 plyaddlem1 26134 plymullem1 26135 dvloglem 26573 logf1o2 26575 efopn 26583 nobdaymin 27705 nocvxminlem 27706 axcontlem10 28936 imaelshi 32020 funimass4f 32594 sitgclg 34312 cvmliftlem3 35262 ivthALT 36311 opnmbllem0 37638 ismtyres 37790 heibor1lem 37791 ismrc 42677 aomclem4 43033 |
| Copyright terms: Public domain | W3C validator |