MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2 Structured version   Visualization version   GIF version

Theorem funfvima2 7268
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima2
StepHypRef Expression
1 funfvima 7267 . . . . 5 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
21ex 412 . . . 4 (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
32com23 86 . . 3 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ (𝐹𝐴))))
43a2d 29 . 2 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
5 ssel 4002 . 2 (𝐴 ⊆ dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
64, 5impel 505 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3976  dom cdm 5700  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581
This theorem is referenced by:  funfvima2d  7269  fnfvima  7270  resfvresima  7272  f1oweALT  8013  tz7.49  8501  phimullem  16826  mrcuni  17679  frlmsslsp  21839  lindfrn  21864  iscldtop  23124  1stcfb  23474  2ndcomap  23487  rnelfm  23982  fmfnfmlem2  23984  fmfnfmlem4  23986  qtopbaslem  24800  tgqioo  24841  bndth  25009  volsup  25610  dyadmbllem  25653  opnmbllem  25655  itg1addlem4  25753  itg1addlem4OLD  25754  c1liplem1  26055  dvcnvrelem1  26076  dvcnvrelem2  26077  plyco0  26251  plyaddlem1  26272  plymullem1  26273  dvloglem  26708  logf1o2  26710  efopn  26718  nocvxminlem  27840  nocvxmin  27841  axcontlem10  29006  imaelshi  32090  funimass4f  32656  sitgclg  34307  cvmliftlem3  35255  ivthALT  36301  opnmbllem0  37616  ismtyres  37768  heibor1lem  37769  ismrc  42657  aomclem4  43014
  Copyright terms: Public domain W3C validator