![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version |
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
Ref | Expression |
---|---|
funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvima 7242 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
2 | 1 | ex 411 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
5 | ssel 3970 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
6 | 4, 5 | impel 504 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ⊆ wss 3944 dom cdm 5678 “ cima 5681 Fun wfun 6543 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-fv 6557 |
This theorem is referenced by: funfvima2d 7244 fnfvima 7245 resfvresima 7247 f1oweALT 7977 tz7.49 8466 phimullem 16756 mrcuni 17609 frlmsslsp 21752 lindfrn 21777 iscldtop 23048 1stcfb 23398 2ndcomap 23411 rnelfm 23906 fmfnfmlem2 23908 fmfnfmlem4 23910 qtopbaslem 24724 tgqioo 24765 bndth 24933 volsup 25534 dyadmbllem 25577 opnmbllem 25579 itg1addlem4 25677 itg1addlem4OLD 25678 c1liplem1 25978 dvcnvrelem1 25999 dvcnvrelem2 26000 plyco0 26176 plyaddlem1 26197 plymullem1 26198 dvloglem 26632 logf1o2 26634 efopn 26642 nocvxminlem 27761 nocvxmin 27762 axcontlem10 28861 imaelshi 31945 funimass4f 32508 sitgclg 34095 cvmliftlem3 35030 ivthALT 35952 opnmbllem0 37262 ismtyres 37414 heibor1lem 37415 ismrc 42265 aomclem4 42625 |
Copyright terms: Public domain | W3C validator |