MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2 Structured version   Visualization version   GIF version

Theorem funfvima2 7228
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima2
StepHypRef Expression
1 funfvima 7227 . . . . 5 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
21ex 412 . . . 4 (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
32com23 86 . . 3 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ (𝐹𝐴))))
43a2d 29 . 2 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
5 ssel 3970 . 2 (𝐴 ⊆ dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
64, 5impel 505 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  wss 3943  dom cdm 5669  cima 5672  Fun wfun 6531  cfv 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-fv 6545
This theorem is referenced by:  funfvima2d  7229  fnfvima  7230  resfvresima  7232  f1oweALT  7958  tz7.49  8446  phimullem  16721  mrcuni  17574  frlmsslsp  21691  lindfrn  21716  iscldtop  22954  1stcfb  23304  2ndcomap  23317  rnelfm  23812  fmfnfmlem2  23814  fmfnfmlem4  23816  qtopbaslem  24630  tgqioo  24671  bndth  24839  volsup  25440  dyadmbllem  25483  opnmbllem  25485  itg1addlem4  25583  itg1addlem4OLD  25584  c1liplem1  25884  dvcnvrelem1  25905  dvcnvrelem2  25906  plyco0  26081  plyaddlem1  26102  plymullem1  26103  dvloglem  26537  logf1o2  26539  efopn  26547  nocvxminlem  27665  nocvxmin  27666  axcontlem10  28739  imaelshi  31820  funimass4f  32370  sitgclg  33871  cvmliftlem3  34806  ivthALT  35728  opnmbllem0  37037  ismtyres  37189  heibor1lem  37190  ismrc  42017  aomclem4  42377
  Copyright terms: Public domain W3C validator