Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version |
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
Ref | Expression |
---|---|
funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvima 7099 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
2 | 1 | ex 413 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
5 | ssel 3914 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
6 | 4, 5 | impel 506 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 dom cdm 5585 “ cima 5588 Fun wfun 6421 ‘cfv 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6385 df-fun 6429 df-fn 6430 df-fv 6435 |
This theorem is referenced by: funfvima2d 7101 fnfvima 7102 resfvresima 7104 f1oweALT 7805 tz7.49 8264 phimullem 16468 mrcuni 17318 frlmsslsp 20991 lindfrn 21016 iscldtop 22234 1stcfb 22584 2ndcomap 22597 rnelfm 23092 fmfnfmlem2 23094 fmfnfmlem4 23096 qtopbaslem 23910 tgqioo 23951 bndth 24109 volsup 24708 dyadmbllem 24751 opnmbllem 24753 itg1addlem4 24851 itg1addlem4OLD 24852 c1liplem1 25148 dvcnvrelem1 25169 dvcnvrelem2 25170 plyco0 25341 plyaddlem1 25362 plymullem1 25363 dvloglem 25791 logf1o2 25793 efopn 25801 axcontlem10 27329 imaelshi 30406 funimass4f 30958 sitgclg 32295 cvmliftlem3 33235 nocvxminlem 33958 nocvxmin 33959 ivthALT 34510 opnmbllem0 35799 ismtyres 35952 heibor1lem 35953 ismrc 40509 aomclem4 40868 |
Copyright terms: Public domain | W3C validator |