| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version | ||
| Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
| Ref | Expression |
|---|---|
| funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvima 7173 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 5 | ssel 3924 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
| 6 | 4, 5 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 dom cdm 5621 “ cima 5624 Fun wfun 6483 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-fv 6497 |
| This theorem is referenced by: funfvima2d 7175 fnfvima 7176 resfvresima 7178 f1oweALT 7913 tz7.49 8373 phimullem 16697 mrcuni 17535 frlmsslsp 21742 lindfrn 21767 iscldtop 23030 1stcfb 23380 2ndcomap 23393 rnelfm 23888 fmfnfmlem2 23890 fmfnfmlem4 23892 qtopbaslem 24693 tgqioo 24735 bndth 24904 volsup 25504 dyadmbllem 25547 opnmbllem 25549 itg1addlem4 25647 c1liplem1 25948 dvcnvrelem1 25969 dvcnvrelem2 25970 plyco0 26144 plyaddlem1 26165 plymullem1 26166 dvloglem 26604 logf1o2 26606 efopn 26614 nobdaymin 27736 nocvxminlem 27737 axcontlem10 28972 imaelshi 32059 funimass4f 32641 sitgclg 34427 cvmliftlem3 35403 ivthALT 36451 opnmbllem0 37769 ismtyres 37921 heibor1lem 37922 ismrc 42858 aomclem4 43214 |
| Copyright terms: Public domain | W3C validator |