MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2 Structured version   Visualization version   GIF version

Theorem funfvima2 7251
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima2
StepHypRef Expression
1 funfvima 7250 . . . . 5 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
21ex 412 . . . 4 (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
32com23 86 . . 3 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ (𝐹𝐴))))
43a2d 29 . 2 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
5 ssel 3989 . 2 (𝐴 ⊆ dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
64, 5impel 505 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wss 3963  dom cdm 5689  cima 5692  Fun wfun 6557  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  funfvima2d  7252  fnfvima  7253  resfvresima  7255  f1oweALT  7996  tz7.49  8484  phimullem  16813  mrcuni  17666  frlmsslsp  21834  lindfrn  21859  iscldtop  23119  1stcfb  23469  2ndcomap  23482  rnelfm  23977  fmfnfmlem2  23979  fmfnfmlem4  23981  qtopbaslem  24795  tgqioo  24836  bndth  25004  volsup  25605  dyadmbllem  25648  opnmbllem  25650  itg1addlem4  25748  itg1addlem4OLD  25749  c1liplem1  26050  dvcnvrelem1  26071  dvcnvrelem2  26072  plyco0  26246  plyaddlem1  26267  plymullem1  26268  dvloglem  26705  logf1o2  26707  efopn  26715  nocvxminlem  27837  nocvxmin  27838  axcontlem10  29003  imaelshi  32087  funimass4f  32654  sitgclg  34324  cvmliftlem3  35272  ivthALT  36318  opnmbllem0  37643  ismtyres  37795  heibor1lem  37796  ismrc  42689  aomclem4  43046
  Copyright terms: Public domain W3C validator