| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version | ||
| Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
| Ref | Expression |
|---|---|
| funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvima 7251 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 5 | ssel 3976 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
| 6 | 4, 5 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3950 dom cdm 5684 “ cima 5687 Fun wfun 6554 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-fv 6568 |
| This theorem is referenced by: funfvima2d 7253 fnfvima 7254 resfvresima 7256 f1oweALT 7998 tz7.49 8486 phimullem 16817 mrcuni 17665 frlmsslsp 21817 lindfrn 21842 iscldtop 23104 1stcfb 23454 2ndcomap 23467 rnelfm 23962 fmfnfmlem2 23964 fmfnfmlem4 23966 qtopbaslem 24780 tgqioo 24822 bndth 24991 volsup 25592 dyadmbllem 25635 opnmbllem 25637 itg1addlem4 25735 c1liplem1 26036 dvcnvrelem1 26057 dvcnvrelem2 26058 plyco0 26232 plyaddlem1 26253 plymullem1 26254 dvloglem 26691 logf1o2 26693 efopn 26701 nocvxminlem 27823 nocvxmin 27824 axcontlem10 28989 imaelshi 32078 funimass4f 32648 sitgclg 34345 cvmliftlem3 35293 ivthALT 36337 opnmbllem0 37664 ismtyres 37816 heibor1lem 37817 ismrc 42717 aomclem4 43074 |
| Copyright terms: Public domain | W3C validator |