| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version | ||
| Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
| Ref | Expression |
|---|---|
| funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvima 7186 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
| 2 | 1 | ex 412 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
| 5 | ssel 3937 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
| 6 | 4, 5 | impel 505 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3911 dom cdm 5631 “ cima 5634 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-fv 6507 |
| This theorem is referenced by: funfvima2d 7188 fnfvima 7189 resfvresima 7191 f1oweALT 7930 tz7.49 8390 phimullem 16725 mrcuni 17558 frlmsslsp 21681 lindfrn 21706 iscldtop 22958 1stcfb 23308 2ndcomap 23321 rnelfm 23816 fmfnfmlem2 23818 fmfnfmlem4 23820 qtopbaslem 24622 tgqioo 24664 bndth 24833 volsup 25433 dyadmbllem 25476 opnmbllem 25478 itg1addlem4 25576 c1liplem1 25877 dvcnvrelem1 25898 dvcnvrelem2 25899 plyco0 26073 plyaddlem1 26094 plymullem1 26095 dvloglem 26533 logf1o2 26535 efopn 26543 nocvxminlem 27665 nocvxmin 27666 axcontlem10 28876 imaelshi 31960 funimass4f 32534 sitgclg 34306 cvmliftlem3 35247 ivthALT 36296 opnmbllem0 37623 ismtyres 37775 heibor1lem 37776 ismrc 42662 aomclem4 43019 |
| Copyright terms: Public domain | W3C validator |