MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfvima2 Structured version   Visualization version   GIF version

Theorem funfvima2 7187
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.)
Assertion
Ref Expression
funfvima2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))

Proof of Theorem funfvima2
StepHypRef Expression
1 funfvima 7186 . . . . 5 ((Fun 𝐹𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
21ex 412 . . . 4 (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
32com23 86 . . 3 (Fun 𝐹 → (𝐵𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ (𝐹𝐴))))
43a2d 29 . 2 (Fun 𝐹 → ((𝐵𝐴𝐵 ∈ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴))))
5 ssel 3937 . 2 (𝐴 ⊆ dom 𝐹 → (𝐵𝐴𝐵 ∈ dom 𝐹))
64, 5impel 505 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐵𝐴 → (𝐹𝐵) ∈ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3911  dom cdm 5631  cima 5634  Fun wfun 6493  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  funfvima2d  7188  fnfvima  7189  resfvresima  7191  f1oweALT  7930  tz7.49  8390  phimullem  16725  mrcuni  17558  frlmsslsp  21681  lindfrn  21706  iscldtop  22958  1stcfb  23308  2ndcomap  23321  rnelfm  23816  fmfnfmlem2  23818  fmfnfmlem4  23820  qtopbaslem  24622  tgqioo  24664  bndth  24833  volsup  25433  dyadmbllem  25476  opnmbllem  25478  itg1addlem4  25576  c1liplem1  25877  dvcnvrelem1  25898  dvcnvrelem2  25899  plyco0  26073  plyaddlem1  26094  plymullem1  26095  dvloglem  26533  logf1o2  26535  efopn  26543  nocvxminlem  27665  nocvxmin  27666  axcontlem10  28876  imaelshi  31960  funimass4f  32534  sitgclg  34306  cvmliftlem3  35247  ivthALT  36296  opnmbllem0  37623  ismtyres  37775  heibor1lem  37776  ismrc  42662  aomclem4  43019
  Copyright terms: Public domain W3C validator