Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfvima2 | Structured version Visualization version GIF version |
Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997.) |
Ref | Expression |
---|---|
funfvima2 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvima 7106 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) | |
2 | 1 | ex 413 | . . . 4 ⊢ (Fun 𝐹 → (𝐵 ∈ dom 𝐹 → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
3 | 2 | com23 86 | . . 3 ⊢ (Fun 𝐹 → (𝐵 ∈ 𝐴 → (𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
4 | 3 | a2d 29 | . 2 ⊢ (Fun 𝐹 → ((𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴)))) |
5 | ssel 3914 | . 2 ⊢ (𝐴 ⊆ dom 𝐹 → (𝐵 ∈ 𝐴 → 𝐵 ∈ dom 𝐹)) | |
6 | 4, 5 | impel 506 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐵 ∈ 𝐴 → (𝐹‘𝐵) ∈ (𝐹 “ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 dom cdm 5589 “ cima 5592 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: funfvima2d 7108 fnfvima 7109 resfvresima 7111 f1oweALT 7815 tz7.49 8276 phimullem 16480 mrcuni 17330 frlmsslsp 21003 lindfrn 21028 iscldtop 22246 1stcfb 22596 2ndcomap 22609 rnelfm 23104 fmfnfmlem2 23106 fmfnfmlem4 23108 qtopbaslem 23922 tgqioo 23963 bndth 24121 volsup 24720 dyadmbllem 24763 opnmbllem 24765 itg1addlem4 24863 itg1addlem4OLD 24864 c1liplem1 25160 dvcnvrelem1 25181 dvcnvrelem2 25182 plyco0 25353 plyaddlem1 25374 plymullem1 25375 dvloglem 25803 logf1o2 25805 efopn 25813 axcontlem10 27341 imaelshi 30420 funimass4f 30972 sitgclg 32309 cvmliftlem3 33249 nocvxminlem 33972 nocvxmin 33973 ivthALT 34524 opnmbllem0 35813 ismtyres 35966 heibor1lem 35967 ismrc 40523 aomclem4 40882 |
Copyright terms: Public domain | W3C validator |