![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funop | Structured version Visualization version GIF version |
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6590, as relsnopg 5794 is to relop 5841. (New usage is discouraged.) |
Ref | Expression |
---|---|
funopsn.x | ⊢ 𝑋 ∈ V |
funopsn.y | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
funop | ⊢ (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . 3 ⊢ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩ | |
2 | funopsn.x | . . . 4 ⊢ 𝑋 ∈ V | |
3 | funopsn.y | . . . 4 ⊢ 𝑌 ∈ V | |
4 | 2, 3 | funopsn 7139 | . . 3 ⊢ ((Fun ⟨𝑋, 𝑌⟩ ∧ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
5 | 1, 4 | mpan2 688 | . 2 ⊢ (Fun ⟨𝑋, 𝑌⟩ → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
6 | vex 3470 | . . . . . 6 ⊢ 𝑎 ∈ V | |
7 | 6, 6 | funsn 6592 | . . . . 5 ⊢ Fun {⟨𝑎, 𝑎⟩} |
8 | funeq 6559 | . . . . 5 ⊢ (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → (Fun ⟨𝑋, 𝑌⟩ ↔ Fun {⟨𝑎, 𝑎⟩})) | |
9 | 7, 8 | mpbiri 258 | . . . 4 ⊢ (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → Fun ⟨𝑋, 𝑌⟩) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩) |
11 | 10 | exlimiv 1925 | . 2 ⊢ (∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩) |
12 | 5, 11 | impbii 208 | 1 ⊢ (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 {csn 4621 ⟨cop 4627 Fun wfun 6528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 |
This theorem is referenced by: funopdmsn 7141 funsndifnop 7142 |
Copyright terms: Public domain | W3C validator |