MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funop Structured version   Visualization version   GIF version

Theorem funop 6606
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion
Ref Expression
funop (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
Distinct variable groups:   𝑋,𝑎   𝑌,𝑎

Proof of Theorem funop
StepHypRef Expression
1 eqid 2765 . . 3 𝑋, 𝑌⟩ = ⟨𝑋, 𝑌
2 funopsn.x . . . 4 𝑋 ∈ V
3 funopsn.y . . . 4 𝑌 ∈ V
42, 3funopsn 6605 . . 3 ((Fun ⟨𝑋, 𝑌⟩ ∧ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
51, 4mpan2 682 . 2 (Fun ⟨𝑋, 𝑌⟩ → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
6 vex 3353 . . . . . 6 𝑎 ∈ V
76, 6funsn 6120 . . . . 5 Fun {⟨𝑎, 𝑎⟩}
8 funeq 6088 . . . . 5 (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → (Fun ⟨𝑋, 𝑌⟩ ↔ Fun {⟨𝑎, 𝑎⟩}))
97, 8mpbiri 249 . . . 4 (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → Fun ⟨𝑋, 𝑌⟩)
109adantl 473 . . 3 ((𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩)
1110exlimiv 2025 . 2 (∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩)
125, 11impbii 200 1 (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  Vcvv 3350  {csn 4334  cop 4340  Fun wfun 6062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076
This theorem is referenced by:  funopdmsn  6607  funsndifnop  6608
  Copyright terms: Public domain W3C validator