![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funop | Structured version Visualization version GIF version |
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6629, as relsnopg 5827 is to relop 5875. (New usage is discouraged.) |
Ref | Expression |
---|---|
funopsn.x | ⊢ 𝑋 ∈ V |
funopsn.y | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
funop | ⊢ (Fun 〈𝑋, 𝑌〉 ↔ ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ 〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉 | |
2 | funopsn.x | . . . 4 ⊢ 𝑋 ∈ V | |
3 | funopsn.y | . . . 4 ⊢ 𝑌 ∈ V | |
4 | 2, 3 | funopsn 7182 | . . 3 ⊢ ((Fun 〈𝑋, 𝑌〉 ∧ 〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉) → ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
5 | 1, 4 | mpan2 690 | . 2 ⊢ (Fun 〈𝑋, 𝑌〉 → ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
6 | vex 3492 | . . . . . 6 ⊢ 𝑎 ∈ V | |
7 | 6, 6 | funsn 6631 | . . . . 5 ⊢ Fun {〈𝑎, 𝑎〉} |
8 | funeq 6598 | . . . . 5 ⊢ (〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉} → (Fun 〈𝑋, 𝑌〉 ↔ Fun {〈𝑎, 𝑎〉})) | |
9 | 7, 8 | mpbiri 258 | . . . 4 ⊢ (〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉} → Fun 〈𝑋, 𝑌〉) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉}) → Fun 〈𝑋, 𝑌〉) |
11 | 10 | exlimiv 1929 | . 2 ⊢ (∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉}) → Fun 〈𝑋, 𝑌〉) |
12 | 5, 11 | impbii 209 | 1 ⊢ (Fun 〈𝑋, 𝑌〉 ↔ ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: funopdmsn 7184 funsndifnop 7185 |
Copyright terms: Public domain | W3C validator |