| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funop | Structured version Visualization version GIF version | ||
| Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6527, as relsnopg 5738 is to relop 5785. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funopsn.x | ⊢ 𝑋 ∈ V |
| funopsn.y | ⊢ 𝑌 ∈ V |
| Ref | Expression |
|---|---|
| funop | ⊢ (Fun 〈𝑋, 𝑌〉 ↔ ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ 〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉 | |
| 2 | funopsn.x | . . . 4 ⊢ 𝑋 ∈ V | |
| 3 | funopsn.y | . . . 4 ⊢ 𝑌 ∈ V | |
| 4 | 2, 3 | funopsn 7076 | . . 3 ⊢ ((Fun 〈𝑋, 𝑌〉 ∧ 〈𝑋, 𝑌〉 = 〈𝑋, 𝑌〉) → ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
| 5 | 1, 4 | mpan2 691 | . 2 ⊢ (Fun 〈𝑋, 𝑌〉 → ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
| 6 | vex 3440 | . . . . . 6 ⊢ 𝑎 ∈ V | |
| 7 | 6, 6 | funsn 6529 | . . . . 5 ⊢ Fun {〈𝑎, 𝑎〉} |
| 8 | funeq 6496 | . . . . 5 ⊢ (〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉} → (Fun 〈𝑋, 𝑌〉 ↔ Fun {〈𝑎, 𝑎〉})) | |
| 9 | 7, 8 | mpbiri 258 | . . . 4 ⊢ (〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉} → Fun 〈𝑋, 𝑌〉) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉}) → Fun 〈𝑋, 𝑌〉) |
| 11 | 10 | exlimiv 1931 | . 2 ⊢ (∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉}) → Fun 〈𝑋, 𝑌〉) |
| 12 | 5, 11 | impbii 209 | 1 ⊢ (Fun 〈𝑋, 𝑌〉 ↔ ∃𝑎(𝑋 = {𝑎} ∧ 〈𝑋, 𝑌〉 = {〈𝑎, 𝑎〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 {csn 4571 〈cop 4577 Fun wfun 6470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 |
| This theorem is referenced by: funopdmsn 7078 funsndifnop 7079 |
| Copyright terms: Public domain | W3C validator |