MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funop Structured version   Visualization version   GIF version

Theorem funop 7003
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6469, as relsnopg 5702 is to relop 5748. (New usage is discouraged.)
Hypotheses
Ref Expression
funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion
Ref Expression
funop (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
Distinct variable groups:   𝑋,𝑎   𝑌,𝑎

Proof of Theorem funop
StepHypRef Expression
1 eqid 2738 . . 3 𝑋, 𝑌⟩ = ⟨𝑋, 𝑌
2 funopsn.x . . . 4 𝑋 ∈ V
3 funopsn.y . . . 4 𝑌 ∈ V
42, 3funopsn 7002 . . 3 ((Fun ⟨𝑋, 𝑌⟩ ∧ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
51, 4mpan2 687 . 2 (Fun ⟨𝑋, 𝑌⟩ → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
6 vex 3426 . . . . . 6 𝑎 ∈ V
76, 6funsn 6471 . . . . 5 Fun {⟨𝑎, 𝑎⟩}
8 funeq 6438 . . . . 5 (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → (Fun ⟨𝑋, 𝑌⟩ ↔ Fun {⟨𝑎, 𝑎⟩}))
97, 8mpbiri 257 . . . 4 (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → Fun ⟨𝑋, 𝑌⟩)
109adantl 481 . . 3 ((𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩)
1110exlimiv 1934 . 2 (∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩)
125, 11impbii 208 1 (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  Vcvv 3422  {csn 4558  cop 4564  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  funopdmsn  7004  funsndifnop  7005
  Copyright terms: Public domain W3C validator