MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funop Structured version   Visualization version   GIF version

Theorem funop 7143
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6596, as relsnopg 5801 is to relop 5848. (New usage is discouraged.)
Hypotheses
Ref Expression
funopsn.x 𝑋 ∈ V
funopsn.y 𝑌 ∈ V
Assertion
Ref Expression
funop (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
Distinct variable groups:   𝑋,𝑎   𝑌,𝑎

Proof of Theorem funop
StepHypRef Expression
1 eqid 2732 . . 3 𝑋, 𝑌⟩ = ⟨𝑋, 𝑌
2 funopsn.x . . . 4 𝑋 ∈ V
3 funopsn.y . . . 4 𝑌 ∈ V
42, 3funopsn 7142 . . 3 ((Fun ⟨𝑋, 𝑌⟩ ∧ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
51, 4mpan2 689 . 2 (Fun ⟨𝑋, 𝑌⟩ → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
6 vex 3478 . . . . . 6 𝑎 ∈ V
76, 6funsn 6598 . . . . 5 Fun {⟨𝑎, 𝑎⟩}
8 funeq 6565 . . . . 5 (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → (Fun ⟨𝑋, 𝑌⟩ ↔ Fun {⟨𝑎, 𝑎⟩}))
97, 8mpbiri 257 . . . 4 (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → Fun ⟨𝑋, 𝑌⟩)
109adantl 482 . . 3 ((𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩)
1110exlimiv 1933 . 2 (∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩)
125, 11impbii 208 1 (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  {csn 4627  cop 4633  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548
This theorem is referenced by:  funopdmsn  7144  funsndifnop  7145
  Copyright terms: Public domain W3C validator