![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funop | Structured version Visualization version GIF version |
Description: An ordered pair is a function iff it is a singleton of an ordered pair. (Contributed by AV, 20-Sep-2020.) A function is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a function is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is funsng 6553, as relsnopg 5760 is to relop 5807. (New usage is discouraged.) |
Ref | Expression |
---|---|
funopsn.x | ⊢ 𝑋 ∈ V |
funopsn.y | ⊢ 𝑌 ∈ V |
Ref | Expression |
---|---|
funop | ⊢ (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩ | |
2 | funopsn.x | . . . 4 ⊢ 𝑋 ∈ V | |
3 | funopsn.y | . . . 4 ⊢ 𝑌 ∈ V | |
4 | 2, 3 | funopsn 7095 | . . 3 ⊢ ((Fun ⟨𝑋, 𝑌⟩ ∧ ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩) → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
5 | 1, 4 | mpan2 690 | . 2 ⊢ (Fun ⟨𝑋, 𝑌⟩ → ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
6 | vex 3448 | . . . . . 6 ⊢ 𝑎 ∈ V | |
7 | 6, 6 | funsn 6555 | . . . . 5 ⊢ Fun {⟨𝑎, 𝑎⟩} |
8 | funeq 6522 | . . . . 5 ⊢ (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → (Fun ⟨𝑋, 𝑌⟩ ↔ Fun {⟨𝑎, 𝑎⟩})) | |
9 | 7, 8 | mpbiri 258 | . . . 4 ⊢ (⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩} → Fun ⟨𝑋, 𝑌⟩) |
10 | 9 | adantl 483 | . . 3 ⊢ ((𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩) |
11 | 10 | exlimiv 1934 | . 2 ⊢ (∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩}) → Fun ⟨𝑋, 𝑌⟩) |
12 | 5, 11 | impbii 208 | 1 ⊢ (Fun ⟨𝑋, 𝑌⟩ ↔ ∃𝑎(𝑋 = {𝑎} ∧ ⟨𝑋, 𝑌⟩ = {⟨𝑎, 𝑎⟩})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3444 {csn 4587 ⟨cop 4593 Fun wfun 6491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 |
This theorem is referenced by: funopdmsn 7097 funsndifnop 7098 |
Copyright terms: Public domain | W3C validator |