![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfrlem13OLD | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. From here through wfrlem16OLD 8326, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfrlem13OLD.1 | ⊢ 𝑅 We 𝐴 |
wfrlem13OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfrlem13OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
wfrlem13OLD.4 | ⊢ 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) |
Ref | Expression |
---|---|
wfrlem13OLD | ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13OLD.1 | . . . . 5 ⊢ 𝑅 We 𝐴 | |
2 | wfrlem13OLD.2 | . . . . 5 ⊢ 𝑅 Se 𝐴 | |
3 | wfrlem13OLD.3 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfunOLD 8321 | . . . 4 ⊢ Fun 𝐹 |
5 | vex 3476 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | fvex 6903 | . . . . 5 ⊢ (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
7 | 5, 6 | funsn 6600 | . . . 4 ⊢ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} |
8 | 4, 7 | pm3.2i 469 | . . 3 ⊢ (Fun 𝐹 ∧ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) |
9 | 6 | dmsnop 6214 | . . . . 5 ⊢ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧} |
10 | 9 | ineq2i 4208 | . . . 4 ⊢ (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∩ {𝑧}) |
11 | eldifn 4126 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
12 | disjsn 4714 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅) |
14 | 10, 13 | eqtrid 2782 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ∅) |
15 | funun 6593 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})) | |
16 | 8, 14, 15 | sylancr 585 | . 2 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})) |
17 | dmun 5909 | . . 3 ⊢ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) | |
18 | 9 | uneq2i 4159 | . . 3 ⊢ (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧}) |
19 | 17, 18 | eqtri 2758 | . 2 ⊢ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧}) |
20 | wfrlem13OLD.4 | . . . 4 ⊢ 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) | |
21 | 20 | fneq1i 6645 | . . 3 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn (dom 𝐹 ∪ {𝑧})) |
22 | df-fn 6545 | . . 3 ⊢ ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧}))) | |
23 | 21, 22 | bitri 274 | . 2 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧}))) |
24 | 16, 19, 23 | sylanblrc 588 | 1 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4321 {csn 4627 ⟨cop 4633 Se wse 5628 We wwe 5629 dom cdm 5675 ↾ cres 5677 Predcpred 6298 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 wrecscwrecs 8298 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-ov 7414 df-2nd 7978 df-frecs 8268 df-wrecs 8299 |
This theorem is referenced by: wfrlem14OLD 8324 wfrlem15OLD 8325 |
Copyright terms: Public domain | W3C validator |