| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrlem13OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version as of 18-Nov-2024. Lemma for well-ordered recursion. From here through wfrlem16OLD 8347, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| wfrlem13OLD.1 | ⊢ 𝑅 We 𝐴 |
| wfrlem13OLD.2 | ⊢ 𝑅 Se 𝐴 |
| wfrlem13OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| wfrlem13OLD.4 | ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| Ref | Expression |
|---|---|
| wfrlem13OLD | ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfrlem13OLD.1 | . . . . 5 ⊢ 𝑅 We 𝐴 | |
| 2 | wfrlem13OLD.2 | . . . . 5 ⊢ 𝑅 Se 𝐴 | |
| 3 | wfrlem13OLD.3 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 4 | 1, 2, 3 | wfrfunOLD 8342 | . . . 4 ⊢ Fun 𝐹 |
| 5 | vex 3468 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 6 | fvex 6900 | . . . . 5 ⊢ (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
| 7 | 5, 6 | funsn 6600 | . . . 4 ⊢ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} |
| 8 | 4, 7 | pm3.2i 470 | . . 3 ⊢ (Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
| 9 | 6 | dmsnop 6218 | . . . . 5 ⊢ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} = {𝑧} |
| 10 | 9 | ineq2i 4199 | . . . 4 ⊢ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∩ {𝑧}) |
| 11 | eldifn 4114 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
| 12 | disjsn 4693 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹) | |
| 13 | 11, 12 | sylibr 234 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅) |
| 14 | 10, 13 | eqtrid 2781 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) |
| 15 | funun 6593 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) | |
| 16 | 8, 14, 15 | sylancr 587 | . 2 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) |
| 17 | dmun 5903 | . . 3 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
| 18 | 9 | uneq2i 4147 | . . 3 ⊢ (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
| 19 | 17, 18 | eqtri 2757 | . 2 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
| 20 | wfrlem13OLD.4 | . . . 4 ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
| 21 | 20 | fneq1i 6646 | . . 3 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧})) |
| 22 | df-fn 6545 | . . 3 ⊢ ((𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) | |
| 23 | 21, 22 | bitri 275 | . 2 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) |
| 24 | 16, 19, 23 | sylanblrc 590 | 1 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3930 ∪ cun 3931 ∩ cin 3932 ∅c0 4315 {csn 4608 〈cop 4614 Se wse 5617 We wwe 5618 dom cdm 5667 ↾ cres 5669 Predcpred 6302 Fun wfun 6536 Fn wfn 6537 ‘cfv 6542 wrecscwrecs 8319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-ov 7417 df-2nd 7998 df-frecs 8289 df-wrecs 8320 |
| This theorem is referenced by: wfrlem14OLD 8345 wfrlem15OLD 8346 |
| Copyright terms: Public domain | W3C validator |