MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrlem13OLD Structured version   Visualization version   GIF version

Theorem wfrlem13OLD 8377
Description: Lemma for well-ordered recursion. From here through wfrlem16OLD 8380, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
wfrlem13OLD.1 𝑅 We 𝐴
wfrlem13OLD.2 𝑅 Se 𝐴
wfrlem13OLD.3 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
wfrlem13OLD.4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
Assertion
Ref Expression
wfrlem13OLD (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐹   𝑧,𝑅
Allowed substitution hints:   𝐶(𝑧)   𝐺(𝑧)

Proof of Theorem wfrlem13OLD
StepHypRef Expression
1 wfrlem13OLD.1 . . . . 5 𝑅 We 𝐴
2 wfrlem13OLD.2 . . . . 5 𝑅 Se 𝐴
3 wfrlem13OLD.3 . . . . 5 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
41, 2, 3wfrfunOLD 8375 . . . 4 Fun 𝐹
5 vex 3492 . . . . 5 𝑧 ∈ V
6 fvex 6933 . . . . 5 (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V
75, 6funsn 6631 . . . 4 Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}
84, 7pm3.2i 470 . . 3 (Fun 𝐹 ∧ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
96dmsnop 6247 . . . . 5 dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩} = {𝑧}
109ineq2i 4238 . . . 4 (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∩ {𝑧})
11 eldifn 4155 . . . . 5 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹)
12 disjsn 4736 . . . . 5 ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹)
1311, 12sylibr 234 . . . 4 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅)
1410, 13eqtrid 2792 . . 3 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ∅)
15 funun 6624 . . 3 (((Fun 𝐹 ∧ Fun {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
168, 14, 15sylancr 586 . 2 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}))
17 dmun 5935 . . 3 dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
189uneq2i 4188 . . 3 (dom 𝐹 ∪ dom {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})
1917, 18eqtri 2768 . 2 dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})
20 wfrlem13OLD.4 . . . 4 𝐶 = (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩})
2120fneq1i 6676 . . 3 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn (dom 𝐹 ∪ {𝑧}))
22 df-fn 6576 . . 3 ((𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})))
2321, 22bitri 275 . 2 (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) ∧ dom (𝐹 ∪ {⟨𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))⟩}) = (dom 𝐹 ∪ {𝑧})))
2416, 19, 23sylanblrc 589 1 (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  cdif 3973  cun 3974  cin 3975  c0 4352  {csn 4648  cop 4654   Se wse 5650   We wwe 5651  dom cdm 5700  cres 5702  Predcpred 6331  Fun wfun 6567   Fn wfn 6568  cfv 6573  wrecscwrecs 8352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353
This theorem is referenced by:  wfrlem14OLD  8378  wfrlem15OLD  8379
  Copyright terms: Public domain W3C validator