![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfrlem13OLD | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. From here through wfrlem16OLD 8380, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfrlem13OLD.1 | ⊢ 𝑅 We 𝐴 |
wfrlem13OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfrlem13OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
wfrlem13OLD.4 | ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
Ref | Expression |
---|---|
wfrlem13OLD | ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13OLD.1 | . . . . 5 ⊢ 𝑅 We 𝐴 | |
2 | wfrlem13OLD.2 | . . . . 5 ⊢ 𝑅 Se 𝐴 | |
3 | wfrlem13OLD.3 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfunOLD 8375 | . . . 4 ⊢ Fun 𝐹 |
5 | vex 3492 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | fvex 6933 | . . . . 5 ⊢ (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
7 | 5, 6 | funsn 6631 | . . . 4 ⊢ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} |
8 | 4, 7 | pm3.2i 470 | . . 3 ⊢ (Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
9 | 6 | dmsnop 6247 | . . . . 5 ⊢ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} = {𝑧} |
10 | 9 | ineq2i 4238 | . . . 4 ⊢ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∩ {𝑧}) |
11 | eldifn 4155 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
12 | disjsn 4736 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹) | |
13 | 11, 12 | sylibr 234 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅) |
14 | 10, 13 | eqtrid 2792 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) |
15 | funun 6624 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) | |
16 | 8, 14, 15 | sylancr 586 | . 2 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) |
17 | dmun 5935 | . . 3 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
18 | 9 | uneq2i 4188 | . . 3 ⊢ (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
19 | 17, 18 | eqtri 2768 | . 2 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
20 | wfrlem13OLD.4 | . . . 4 ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
21 | 20 | fneq1i 6676 | . . 3 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧})) |
22 | df-fn 6576 | . . 3 ⊢ ((𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) | |
23 | 21, 22 | bitri 275 | . 2 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) |
24 | 16, 19, 23 | sylanblrc 589 | 1 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 {csn 4648 〈cop 4654 Se wse 5650 We wwe 5651 dom cdm 5700 ↾ cres 5702 Predcpred 6331 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 wrecscwrecs 8352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 |
This theorem is referenced by: wfrlem14OLD 8378 wfrlem15OLD 8379 |
Copyright terms: Public domain | W3C validator |