Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wfrlem13OLD | Structured version Visualization version GIF version |
Description: Lemma for well-ordered recursion. From here through wfrlem16OLD 8155, we aim to prove that dom 𝐹 = 𝐴. We do this by supposing that there is an element 𝑧 of 𝐴 that is not in dom 𝐹. We then define 𝐶 by extending dom 𝐹 with the appropriate value at 𝑧. We then show that 𝑧 cannot be an 𝑅 minimal element of (𝐴 ∖ dom 𝐹), meaning that (𝐴 ∖ dom 𝐹) must be empty, so dom 𝐹 = 𝐴. Here, we show that 𝐶 is a function extending the domain of 𝐹 by one. Obsolete as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 21-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
wfrlem13OLD.1 | ⊢ 𝑅 We 𝐴 |
wfrlem13OLD.2 | ⊢ 𝑅 Se 𝐴 |
wfrlem13OLD.3 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
wfrlem13OLD.4 | ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
Ref | Expression |
---|---|
wfrlem13OLD | ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfrlem13OLD.1 | . . . . 5 ⊢ 𝑅 We 𝐴 | |
2 | wfrlem13OLD.2 | . . . . 5 ⊢ 𝑅 Se 𝐴 | |
3 | wfrlem13OLD.3 | . . . . 5 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
4 | 1, 2, 3 | wfrfunOLD 8150 | . . . 4 ⊢ Fun 𝐹 |
5 | vex 3436 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | fvex 6787 | . . . . 5 ⊢ (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∈ V | |
7 | 5, 6 | funsn 6487 | . . . 4 ⊢ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} |
8 | 4, 7 | pm3.2i 471 | . . 3 ⊢ (Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) |
9 | 6 | dmsnop 6119 | . . . . 5 ⊢ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉} = {𝑧} |
10 | 9 | ineq2i 4143 | . . . 4 ⊢ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∩ {𝑧}) |
11 | eldifn 4062 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → ¬ 𝑧 ∈ dom 𝐹) | |
12 | disjsn 4647 | . . . . 5 ⊢ ((dom 𝐹 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ dom 𝐹) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ {𝑧}) = ∅) |
14 | 10, 13 | eqtrid 2790 | . . 3 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) |
15 | funun 6480 | . . 3 ⊢ (((Fun 𝐹 ∧ Fun {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ (dom 𝐹 ∩ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = ∅) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) | |
16 | 8, 14, 15 | sylancr 587 | . 2 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉})) |
17 | dmun 5819 | . . 3 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
18 | 9 | uneq2i 4094 | . . 3 ⊢ (dom 𝐹 ∪ dom {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
19 | 17, 18 | eqtri 2766 | . 2 ⊢ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}) |
20 | wfrlem13OLD.4 | . . . 4 ⊢ 𝐶 = (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) | |
21 | 20 | fneq1i 6530 | . . 3 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧})) |
22 | df-fn 6436 | . . 3 ⊢ ((𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) | |
23 | 21, 22 | bitri 274 | . 2 ⊢ (𝐶 Fn (dom 𝐹 ∪ {𝑧}) ↔ (Fun (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) ∧ dom (𝐹 ∪ {〈𝑧, (𝐺‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))〉}) = (dom 𝐹 ∪ {𝑧}))) |
24 | 16, 19, 23 | sylanblrc 590 | 1 ⊢ (𝑧 ∈ (𝐴 ∖ dom 𝐹) → 𝐶 Fn (dom 𝐹 ∪ {𝑧})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 〈cop 4567 Se wse 5542 We wwe 5543 dom cdm 5589 ↾ cres 5591 Predcpred 6201 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 wrecscwrecs 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 |
This theorem is referenced by: wfrlem14OLD 8153 wfrlem15OLD 8154 |
Copyright terms: Public domain | W3C validator |