Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt2bd Structured version   Visualization version   GIF version

Theorem fvmpt2bd 45136
Description: Value of a function given by the maps-to notation. Deduction version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fvmpt2bd.1 (𝜑𝐹 = (𝑥𝐴𝐵))
Assertion
Ref Expression
fvmpt2bd ((𝜑𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem fvmpt2bd
StepHypRef Expression
1 fvmpt2bd.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
21fveq1d 6867 . . 3 (𝜑 → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
323ad2ant1 1133 . 2 ((𝜑𝑥𝐴𝐵𝐶) → (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥))
4 eqid 2730 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54fvmpt2 6986 . . 3 ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
653adant1 1130 . 2 ((𝜑𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
73, 6eqtrd 2765 1 ((𝜑𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cmpt 5196  cfv 6519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fv 6527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator