Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt2df Structured version   Visualization version   GIF version

Theorem fvmpt2df 45273
Description: Deduction version of fvmpt2 6982. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fvmpt2df.1 𝑥𝐴
fvmpt2df.2 𝐹 = (𝑥𝐴𝐵)
fvmpt2df.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2df ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)

Proof of Theorem fvmpt2df
StepHypRef Expression
1 fvmpt2df.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21fveq1i 6862 . 2 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3 id 22 . . 3 (𝑥𝐴𝑥𝐴)
4 fvmpt2df.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 fvmpt2df.1 . . . 4 𝑥𝐴
65fvmpt2f 6972 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
73, 4, 6syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
82, 7eqtrid 2777 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2877  cmpt 5191  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  fsupdm  46847
  Copyright terms: Public domain W3C validator