Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt2df Structured version   Visualization version   GIF version

Theorem fvmpt2df 43977
Description: Deduction version of fvmpt2 7010. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fvmpt2df.1 𝑥𝐴
fvmpt2df.2 𝐹 = (𝑥𝐴𝐵)
fvmpt2df.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2df ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)

Proof of Theorem fvmpt2df
StepHypRef Expression
1 fvmpt2df.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21fveq1i 6893 . 2 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3 id 22 . . 3 (𝑥𝐴𝑥𝐴)
4 fvmpt2df.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 fvmpt2df.1 . . . 4 𝑥𝐴
65fvmpt2f 7000 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
73, 4, 6syl2an2 685 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
82, 7eqtrid 2785 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wnfc 2884  cmpt 5232  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by:  fsupdm  45558
  Copyright terms: Public domain W3C validator