| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvmpt2df | Structured version Visualization version GIF version | ||
| Description: Deduction version of fvmpt2 6946. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| fvmpt2df.1 | ⊢ Ⅎ𝑥𝐴 |
| fvmpt2df.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| fvmpt2df.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| fvmpt2df | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmpt2df.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | fveq1i 6829 | . 2 ⊢ (𝐹‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) |
| 3 | id 22 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
| 4 | fvmpt2df.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 5 | fvmpt2df.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | fvmpt2f 6936 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 7 | 3, 4, 6 | syl2an2 686 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 8 | 2, 7 | eqtrid 2780 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 ↦ cmpt 5174 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fsupdm 46964 |
| Copyright terms: Public domain | W3C validator |