Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt2df Structured version   Visualization version   GIF version

Theorem fvmpt2df 45393
Description: Deduction version of fvmpt2 6946. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fvmpt2df.1 𝑥𝐴
fvmpt2df.2 𝐹 = (𝑥𝐴𝐵)
fvmpt2df.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2df ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)

Proof of Theorem fvmpt2df
StepHypRef Expression
1 fvmpt2df.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21fveq1i 6829 . 2 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3 id 22 . . 3 (𝑥𝐴𝑥𝐴)
4 fvmpt2df.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 fvmpt2df.1 . . . 4 𝑥𝐴
65fvmpt2f 6936 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
73, 4, 6syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
82, 7eqtrid 2780 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2880  cmpt 5174  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fsupdm  46964
  Copyright terms: Public domain W3C validator