Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvmpt2df Structured version   Visualization version   GIF version

Theorem fvmpt2df 45250
Description: Deduction version of fvmpt2 6945. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fvmpt2df.1 𝑥𝐴
fvmpt2df.2 𝐹 = (𝑥𝐴𝐵)
fvmpt2df.3 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
fvmpt2df ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)

Proof of Theorem fvmpt2df
StepHypRef Expression
1 fvmpt2df.2 . . 3 𝐹 = (𝑥𝐴𝐵)
21fveq1i 6827 . 2 (𝐹𝑥) = ((𝑥𝐴𝐵)‘𝑥)
3 id 22 . . 3 (𝑥𝐴𝑥𝐴)
4 fvmpt2df.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 fvmpt2df.1 . . . 4 𝑥𝐴
65fvmpt2f 6935 . . 3 ((𝑥𝐴𝐵𝑉) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
73, 4, 6syl2an2 686 . 2 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
82, 7eqtrid 2776 1 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  cmpt 5176  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  fsupdm  46824
  Copyright terms: Public domain W3C validator