Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdff Structured version   Visualization version   GIF version

Theorem fmptdff 43049
Description: A version of fmptd 7020 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptdff.1 𝑥𝜑
fmptdff.2 𝑥𝐴
fmptdff.3 𝑥𝐶
fmptdff.4 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdff.5 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdff (𝜑𝐹:𝐴𝐶)

Proof of Theorem fmptdff
StepHypRef Expression
1 fmptdff.1 . . 3 𝑥𝜑
2 fmptdff.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3237 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 fmptdff.2 . . 3 𝑥𝐴
5 fmptdff.3 . . 3 𝑥𝐶
6 fmptdff.5 . . 3 𝐹 = (𝑥𝐴𝐵)
74, 5, 6fmptff 43047 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
83, 7sylib 217 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wnf 1783  wcel 2104  wnfc 2884  wral 3061  cmpt 5164  wf 6454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3341  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-fun 6460  df-fn 6461  df-f 6462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator