Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdff Structured version   Visualization version   GIF version

Theorem fmptdff 44530
Description: A version of fmptd 7108 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptdff.1 𝑥𝜑
fmptdff.2 𝑥𝐴
fmptdff.3 𝑥𝐶
fmptdff.4 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdff.5 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdff (𝜑𝐹:𝐴𝐶)

Proof of Theorem fmptdff
StepHypRef Expression
1 fmptdff.1 . . 3 𝑥𝜑
2 fmptdff.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3249 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 fmptdff.2 . . 3 𝑥𝐴
5 fmptdff.3 . . 3 𝑥𝐶
6 fmptdff.5 . . 3 𝐹 = (𝑥𝐴𝐵)
74, 5, 6fmptff 44528 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
83, 7sylib 217 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wnf 1777  wcel 2098  wnfc 2877  wral 3055  cmpt 5224  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-fun 6538  df-fn 6539  df-f 6540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator