Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdff Structured version   Visualization version   GIF version

Theorem fmptdff 45181
Description: A version of fmptd 7148 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptdff.1 𝑥𝜑
fmptdff.2 𝑥𝐴
fmptdff.3 𝑥𝐶
fmptdff.4 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdff.5 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdff (𝜑𝐹:𝐴𝐶)

Proof of Theorem fmptdff
StepHypRef Expression
1 fmptdff.1 . . 3 𝑥𝜑
2 fmptdff.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3264 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 fmptdff.2 . . 3 𝑥𝐴
5 fmptdff.3 . . 3 𝑥𝐶
6 fmptdff.5 . . 3 𝐹 = (𝑥𝐴𝐵)
74, 5, 6fmptff 45179 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
83, 7sylib 218 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  wral 3067  cmpt 5249  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator