Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdff Structured version   Visualization version   GIF version

Theorem fmptdff 43976
Description: A version of fmptd 7114 using bound-variable hypothesis instead of a distinct variable condition for 𝜑. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
fmptdff.1 𝑥𝜑
fmptdff.2 𝑥𝐴
fmptdff.3 𝑥𝐶
fmptdff.4 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdff.5 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdff (𝜑𝐹:𝐴𝐶)

Proof of Theorem fmptdff
StepHypRef Expression
1 fmptdff.1 . . 3 𝑥𝜑
2 fmptdff.4 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3256 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 fmptdff.2 . . 3 𝑥𝐴
5 fmptdff.3 . . 3 𝑥𝐶
6 fmptdff.5 . . 3 𝐹 = (𝑥𝐴𝐵)
74, 5, 6fmptff 43974 . 2 (∀𝑥𝐴 𝐵𝐶𝐹:𝐴𝐶)
83, 7sylib 217 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wnf 1786  wcel 2107  wnfc 2884  wral 3062  cmpt 5232  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator