Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvmptd2f | Structured version Visualization version GIF version |
Description: Alternate deduction version of fvmpt 6869, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.) |
Ref | Expression |
---|---|
fvmptd2f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2f.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
fvmptd2f.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
fvmptd2f.4 | ⊢ Ⅎ𝑥𝐹 |
fvmptd2f.5 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
fvmptd2f | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2f.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
2 | fvmptd2f.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
3 | fvmptd2f.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
4 | fvmptd2f.4 | . 2 ⊢ Ⅎ𝑥𝐹 | |
5 | fvmptd2f.5 | . 2 ⊢ Ⅎ𝑥𝜓 | |
6 | nfv 1920 | . 2 ⊢ Ⅎ𝑥𝜑 | |
7 | 1, 2, 3, 4, 5, 6 | fvmptd3f 6884 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 Ⅎwnfc 2888 ↦ cmpt 5161 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 |
This theorem is referenced by: fvmptdv 6886 yonedalem4b 17975 |
Copyright terms: Public domain | W3C validator |