MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd2f Structured version   Visualization version   GIF version

Theorem fvmptd2f 6923
Description: Alternate deduction version of fvmpt 6907, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.)
Hypotheses
Ref Expression
fvmptd2f.1 (𝜑𝐴𝐷)
fvmptd2f.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptd2f.3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
fvmptd2f.4 𝑥𝐹
fvmptd2f.5 𝑥𝜓
Assertion
Ref Expression
fvmptd2f (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd2f
StepHypRef Expression
1 fvmptd2f.1 . 2 (𝜑𝐴𝐷)
2 fvmptd2f.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
3 fvmptd2f.3 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
4 fvmptd2f.4 . 2 𝑥𝐹
5 fvmptd2f.5 . 2 𝑥𝜓
6 nfv 1915 . 2 𝑥𝜑
71, 2, 3, 4, 5, 6fvmptd3f 6922 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wnf 1783  wcel 2104  wnfc 2885  cmpt 5164  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fv 6466
This theorem is referenced by:  fvmptdv  6924  yonedalem4b  18043
  Copyright terms: Public domain W3C validator