| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptd2f | Structured version Visualization version GIF version | ||
| Description: Alternate deduction version of fvmpt 7016, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.) |
| Ref | Expression |
|---|---|
| fvmptd2f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptd2f.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptd2f.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
| fvmptd2f.4 | ⊢ Ⅎ𝑥𝐹 |
| fvmptd2f.5 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| fvmptd2f | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptd2f.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 2 | fvmptd2f.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 3 | fvmptd2f.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
| 4 | fvmptd2f.4 | . 2 ⊢ Ⅎ𝑥𝐹 | |
| 5 | fvmptd2f.5 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 6 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 7 | 1, 2, 3, 4, 5, 6 | fvmptd3f 7031 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2890 ↦ cmpt 5225 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: fvmptdv 7033 yonedalem4b 18321 |
| Copyright terms: Public domain | W3C validator |