MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptd2f Structured version   Visualization version   GIF version

Theorem fvmptd2f 6885
Description: Alternate deduction version of fvmpt 6869, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.)
Hypotheses
Ref Expression
fvmptd2f.1 (𝜑𝐴𝐷)
fvmptd2f.2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
fvmptd2f.3 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
fvmptd2f.4 𝑥𝐹
fvmptd2f.5 𝑥𝜓
Assertion
Ref Expression
fvmptd2f (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem fvmptd2f
StepHypRef Expression
1 fvmptd2f.1 . 2 (𝜑𝐴𝐷)
2 fvmptd2f.2 . 2 ((𝜑𝑥 = 𝐴) → 𝐵𝑉)
3 fvmptd2f.3 . 2 ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))
4 fvmptd2f.4 . 2 𝑥𝐹
5 fvmptd2f.5 . 2 𝑥𝜓
6 nfv 1920 . 2 𝑥𝜑
71, 2, 3, 4, 5, 6fvmptd3f 6884 1 (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1789  wcel 2109  wnfc 2888  cmpt 5161  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fv 6438
This theorem is referenced by:  fvmptdv  6886  yonedalem4b  17975
  Copyright terms: Public domain W3C validator