![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptd2f | Structured version Visualization version GIF version |
Description: Alternate deduction version of fvmpt 6999, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.) |
Ref | Expression |
---|---|
fvmptd2f.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptd2f.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
fvmptd2f.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
fvmptd2f.4 | ⊢ Ⅎ𝑥𝐹 |
fvmptd2f.5 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
fvmptd2f | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptd2f.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
2 | fvmptd2f.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
3 | fvmptd2f.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
4 | fvmptd2f.4 | . 2 ⊢ Ⅎ𝑥𝐹 | |
5 | fvmptd2f.5 | . 2 ⊢ Ⅎ𝑥𝜓 | |
6 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
7 | 1, 2, 3, 4, 5, 6 | fvmptd3f 7014 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ↦ cmpt 5232 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: fvmptdv 7016 yonedalem4b 18229 |
Copyright terms: Public domain | W3C validator |